Cargando…
Unsupervised Deep Anomaly Detection in Chest Radiographs
The purposes of this study are to propose an unsupervised anomaly detection method based on a deep neural network (DNN) model, which requires only normal images for training, and to evaluate its performance with a large chest radiograph dataset. We used the auto-encoding generative adversarial netwo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289984/ https://www.ncbi.nlm.nih.gov/pubmed/33555397 http://dx.doi.org/10.1007/s10278-020-00413-2 |