Cargando…
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features fro...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290033/ https://www.ncbi.nlm.nih.gov/pubmed/34282208 http://dx.doi.org/10.1038/s41598-021-94007-9 |
_version_ | 1783724408862408704 |
---|---|
author | Ke, Peng-fei Xiong, Dong-sheng Li, Jia-hui Pan, Zhi-lin Zhou, Jing Li, Shi-jia Song, Jie Chen, Xiao-yi Li, Gui-xiang Chen, Jun Li, Xiao-bo Ning, Yu-ping Wu, Feng-chun Wu, Kai |
author_facet | Ke, Peng-fei Xiong, Dong-sheng Li, Jia-hui Pan, Zhi-lin Zhou, Jing Li, Shi-jia Song, Jie Chen, Xiao-yi Li, Gui-xiang Chen, Jun Li, Xiao-bo Ning, Yu-ping Wu, Feng-chun Wu, Kai |
author_sort | Ke, Peng-fei |
collection | PubMed |
description | Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data. |
format | Online Article Text |
id | pubmed-8290033 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-82900332021-07-21 An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data Ke, Peng-fei Xiong, Dong-sheng Li, Jia-hui Pan, Zhi-lin Zhou, Jing Li, Shi-jia Song, Jie Chen, Xiao-yi Li, Gui-xiang Chen, Jun Li, Xiao-bo Ning, Yu-ping Wu, Feng-chun Wu, Kai Sci Rep Article Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data. Nature Publishing Group UK 2021-07-19 /pmc/articles/PMC8290033/ /pubmed/34282208 http://dx.doi.org/10.1038/s41598-021-94007-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ke, Peng-fei Xiong, Dong-sheng Li, Jia-hui Pan, Zhi-lin Zhou, Jing Li, Shi-jia Song, Jie Chen, Xiao-yi Li, Gui-xiang Chen, Jun Li, Xiao-bo Ning, Yu-ping Wu, Feng-chun Wu, Kai An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title | An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_full | An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_fullStr | An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_full_unstemmed | An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_short | An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_sort | integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290033/ https://www.ncbi.nlm.nih.gov/pubmed/34282208 http://dx.doi.org/10.1038/s41598-021-94007-9 |
work_keys_str_mv | AT kepengfei anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT xiongdongsheng anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT lijiahui anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT panzhilin anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT zhoujing anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT lishijia anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT songjie anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT chenxiaoyi anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT liguixiang anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT chenjun anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT lixiaobo anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT ningyuping anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT wufengchun anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT wukai anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT kepengfei integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT xiongdongsheng integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT lijiahui integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT panzhilin integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT zhoujing integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT lishijia integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT songjie integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT chenxiaoyi integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT liguixiang integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT chenjun integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT lixiaobo integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT ningyuping integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT wufengchun integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT wukai integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata |