Cargando…

An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data

Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Ke, Peng-fei, Xiong, Dong-sheng, Li, Jia-hui, Pan, Zhi-lin, Zhou, Jing, Li, Shi-jia, Song, Jie, Chen, Xiao-yi, Li, Gui-xiang, Chen, Jun, Li, Xiao-bo, Ning, Yu-ping, Wu, Feng-chun, Wu, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290033/
https://www.ncbi.nlm.nih.gov/pubmed/34282208
http://dx.doi.org/10.1038/s41598-021-94007-9
_version_ 1783724408862408704
author Ke, Peng-fei
Xiong, Dong-sheng
Li, Jia-hui
Pan, Zhi-lin
Zhou, Jing
Li, Shi-jia
Song, Jie
Chen, Xiao-yi
Li, Gui-xiang
Chen, Jun
Li, Xiao-bo
Ning, Yu-ping
Wu, Feng-chun
Wu, Kai
author_facet Ke, Peng-fei
Xiong, Dong-sheng
Li, Jia-hui
Pan, Zhi-lin
Zhou, Jing
Li, Shi-jia
Song, Jie
Chen, Xiao-yi
Li, Gui-xiang
Chen, Jun
Li, Xiao-bo
Ning, Yu-ping
Wu, Feng-chun
Wu, Kai
author_sort Ke, Peng-fei
collection PubMed
description Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.
format Online
Article
Text
id pubmed-8290033
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82900332021-07-21 An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data Ke, Peng-fei Xiong, Dong-sheng Li, Jia-hui Pan, Zhi-lin Zhou, Jing Li, Shi-jia Song, Jie Chen, Xiao-yi Li, Gui-xiang Chen, Jun Li, Xiao-bo Ning, Yu-ping Wu, Feng-chun Wu, Kai Sci Rep Article Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data. Nature Publishing Group UK 2021-07-19 /pmc/articles/PMC8290033/ /pubmed/34282208 http://dx.doi.org/10.1038/s41598-021-94007-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ke, Peng-fei
Xiong, Dong-sheng
Li, Jia-hui
Pan, Zhi-lin
Zhou, Jing
Li, Shi-jia
Song, Jie
Chen, Xiao-yi
Li, Gui-xiang
Chen, Jun
Li, Xiao-bo
Ning, Yu-ping
Wu, Feng-chun
Wu, Kai
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_full An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_fullStr An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_full_unstemmed An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_short An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_sort integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290033/
https://www.ncbi.nlm.nih.gov/pubmed/34282208
http://dx.doi.org/10.1038/s41598-021-94007-9
work_keys_str_mv AT kepengfei anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT xiongdongsheng anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT lijiahui anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT panzhilin anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT zhoujing anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT lishijia anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT songjie anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT chenxiaoyi anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT liguixiang anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT chenjun anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT lixiaobo anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT ningyuping anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT wufengchun anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT wukai anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT kepengfei integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT xiongdongsheng integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT lijiahui integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT panzhilin integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT zhoujing integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT lishijia integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT songjie integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT chenxiaoyi integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT liguixiang integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT chenjun integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT lixiaobo integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT ningyuping integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT wufengchun integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT wukai integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata