Cargando…
Influence of exposure conditions on helium transport and bubble growth in tungsten
Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290035/ https://www.ncbi.nlm.nih.gov/pubmed/34282167 http://dx.doi.org/10.1038/s41598-021-93542-9 |
Sumario: | Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from [Formula: see text] to [Formula: see text] . Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately [Formula: see text] He at [Formula: see text] . After 1 h of exposure, the helium inventory varies from [Formula: see text] at low flux and high temperature to [Formula: see text] at high flux and low temperature. The bubbles inventory varies from [Formula: see text] bubbles m[Formula: see text] to [Formula: see text] bubbles m[Formula: see text]. Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments. |
---|