Cargando…
A deep learning model for predicting next-generation sequencing depth from DNA sequence
Targeted high-throughput DNA sequencing is a primary approach for genomics and molecular diagnostics, and more recently as a readout for DNA information storage. Oligonucleotide probes used to enrich gene loci of interest have different hybridization kinetics, resulting in non-uniform coverage that...
Autores principales: | Zhang, Jinny X., Yordanov, Boyan, Gaunt, Alexander, Wang, Michael X., Dai, Peng, Chen, Yuan-Jyue, Zhang, Kerou, Fang, John Z., Dalchau, Neil, Li, Jiaming, Phillips, Andrew, Zhang, David Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290051/ https://www.ncbi.nlm.nih.gov/pubmed/34282137 http://dx.doi.org/10.1038/s41467-021-24497-8 |
Ejemplares similares
-
Predicting DNA Hybridization Kinetics from Sequence
por: Zhang, Jinny X., et al.
Publicado: (2017) -
Synthesizing and tuning stochastic chemical reaction networks with specified behaviours
por: Murphy, Niall, et al.
Publicado: (2018) -
Sequence Depth, Not PCR Replication, Improves Ecological Inference from Next Generation DNA Sequencing
por: Smith, Dylan P., et al.
Publicado: (2014) -
Deep learning in next-generation sequencing
por: Schmidt, Bertil, et al.
Publicado: (2021) -
In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data
por: Cai, Lei, et al.
Publicado: (2016)