Cargando…
The Dryas iulia Genome Supports Multiple Gains of a W Chromosome from a B Chromosome in Butterflies
In butterflies and moths, which exhibit highly variable sex determination mechanisms, the homogametic Z chromosome is deeply conserved and is featured in many genome assemblies. The evolution and origin of the female W sex chromosome, however, remains mostly unknown. Previous studies have proposed t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290107/ https://www.ncbi.nlm.nih.gov/pubmed/34117762 http://dx.doi.org/10.1093/gbe/evab128 |
Sumario: | In butterflies and moths, which exhibit highly variable sex determination mechanisms, the homogametic Z chromosome is deeply conserved and is featured in many genome assemblies. The evolution and origin of the female W sex chromosome, however, remains mostly unknown. Previous studies have proposed that a ZZ/Z0 sex determination system is ancestral to Lepidoptera, and that W chromosomes may originate from sex-linked B chromosomes. Here, we sequence and assemble the female Dryas iulia genome into 32 highly contiguous ordered and oriented chromosomes, including the Z and W sex chromosomes. We then use sex-specific Hi-C, ATAC-seq, PRO-seq, and whole-genome DNA sequence data sets to test if features of the D. iulia W chromosome are consistent with a hypothesized B chromosome origin. We show that the putative W chromosome displays female-associated DNA sequence, gene expression, and chromatin accessibility to confirm the sex-linked function of the W sequence. In contrast with expectations from studies of homologous sex chromosomes, highly repetitive DNA content on the W chromosome, the sole presence of domesticated repetitive elements in functional DNA, and lack of sequence homology with the Z chromosome or autosomes is most consistent with a B chromosome origin for the W, although it remains challenging to rule out extensive sequence divergence. Synteny analysis of the D. iulia W chromosome with other female lepidopteran genome assemblies shows no homology between W chromosomes and suggests multiple, independent origins of the W chromosome from a B chromosome likely occurred in butterflies. |
---|