Cargando…
Corrigendum: Development of a Machine Learning Model for Optimal Applicator Selection in High-Dose-Rate Cervical Brachytherapy
Autores principales: | Stenhouse, Kailyn, Roumeliotis, Michael, Ciunkiewicz, Philip, Banerjee, Robyn, Yanushkevich, Svetlana, McGeachy, Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290893/ https://www.ncbi.nlm.nih.gov/pubmed/34295829 http://dx.doi.org/10.3389/fonc.2021.730375 |
Ejemplares similares
-
Development of a Machine Learning Model for Optimal Applicator Selection in High-Dose-Rate Cervical Brachytherapy
por: Stenhouse, Kailyn, et al.
Publicado: (2021) -
Excessive waitlists and delays to treatment with low-dose-rate brachytherapy predict an increased risk of recurrence and metastases in intermediate-risk prostatic carcinoma
por: Khanolkar, Rutvij A., et al.
Publicado: (2021) -
Support Vector Machine Model Predicts Dose for Organs at Risk in High-Dose Rate Brachytherapy of Cervical Cancer
por: Zhou, Ping, et al.
Publicado: (2021) -
Verification of Acuros XB dose algorithm using 3D printed low‐density phantoms for clinical photon beams
por: Zavan, Rodolfo, et al.
Publicado: (2018) -
MRI‐TRUS registration methodology for TRUS‐guided HDR prostate brachytherapy
por: McGeachy, Philip, et al.
Publicado: (2021)