Cargando…
Precision measurement of the Newtonian gravitational constant
The Newtonian gravitational constant G, which is one of the most important fundamental physical constants in nature, plays a significant role in the fields of theoretical physics, geophysics, astrophysics and astronomy. Although G was the first physical constant to be introduced in the history of sc...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290936/ https://www.ncbi.nlm.nih.gov/pubmed/34691518 http://dx.doi.org/10.1093/nsr/nwaa165 |
Sumario: | The Newtonian gravitational constant G, which is one of the most important fundamental physical constants in nature, plays a significant role in the fields of theoretical physics, geophysics, astrophysics and astronomy. Although G was the first physical constant to be introduced in the history of science, it is considered to be one of the most difficult to measure accurately so far. Over the past two decades, eleven precision measurements of the gravitational constant have been performed, and the latest recommended value for G published by the Committee on Data for Science and Technology (CODATA) is (6.674 08 ± 0.000 31) × 10(−11) m(3) kg(−1) s(−2) with a relative uncertainty of 47 parts per million. This uncertainty is the smallest compared with previous CODATA recommended values of G; however, it remains a relatively large uncertainty among other fundamental physical constants. In this paper we briefly review the history of the G measurement, and introduce eleven values of G adopted in CODATA 2014 after 2000 and our latest two values published in 2018 using two independent methods. |
---|