Cargando…

Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort

OBJECTIVE: Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. DESIGN: Retrospective cohort study. SETTING: A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020. PARTICIPANTS: SARS-CoV-2 positiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Ottenhoff, Maarten C, Ramos, Lucas A, Potters, Wouter, Janssen, Marcus L F, Hubers, Deborah, Hu, Shi, Fridgeirsson, Egill A, Piña-Fuentes, Dan, Thomas, Rajat, van der Horst, Iwan C C, Herff, Christian, Kubben, Pieter, Elbers, Paul W G, Marquering, Henk A, Welling, Max, Simsek, Suat, de Kruif, Martijn D, Dormans, Tom, Fleuren, Lucas M, Schinkel, Michiel, Noordzij, Peter G, van den Bergh, Joop P, Wyers, Caroline E, Buis, David T B, Wiersinga, W Joost, van den Hout, Ella H C, Reidinga, Auke C, Rusch, Daisy, Sigaloff, Kim C E, Douma, Renee A, de Haan, Lianne, Gritters van den Oever, Niels C, Rennenberg, Roger J M W, van Wingen, Guido A, Aries, Marcel J H, Beudel, Martijn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290951/
https://www.ncbi.nlm.nih.gov/pubmed/34281922
http://dx.doi.org/10.1136/bmjopen-2020-047347
_version_ 1783724554084941824
author Ottenhoff, Maarten C
Ramos, Lucas A
Potters, Wouter
Janssen, Marcus L F
Hubers, Deborah
Hu, Shi
Fridgeirsson, Egill A
Piña-Fuentes, Dan
Thomas, Rajat
van der Horst, Iwan C C
Herff, Christian
Kubben, Pieter
Elbers, Paul W G
Marquering, Henk A
Welling, Max
Simsek, Suat
de Kruif, Martijn D
Dormans, Tom
Fleuren, Lucas M
Schinkel, Michiel
Noordzij, Peter G
van den Bergh, Joop P
Wyers, Caroline E
Buis, David T B
Wiersinga, W Joost
van den Hout, Ella H C
Reidinga, Auke C
Rusch, Daisy
Sigaloff, Kim C E
Douma, Renee A
de Haan, Lianne
Gritters van den Oever, Niels C
Rennenberg, Roger J M W
van Wingen, Guido A
Aries, Marcel J H
Beudel, Martijn
author_facet Ottenhoff, Maarten C
Ramos, Lucas A
Potters, Wouter
Janssen, Marcus L F
Hubers, Deborah
Hu, Shi
Fridgeirsson, Egill A
Piña-Fuentes, Dan
Thomas, Rajat
van der Horst, Iwan C C
Herff, Christian
Kubben, Pieter
Elbers, Paul W G
Marquering, Henk A
Welling, Max
Simsek, Suat
de Kruif, Martijn D
Dormans, Tom
Fleuren, Lucas M
Schinkel, Michiel
Noordzij, Peter G
van den Bergh, Joop P
Wyers, Caroline E
Buis, David T B
Wiersinga, W Joost
van den Hout, Ella H C
Reidinga, Auke C
Rusch, Daisy
Sigaloff, Kim C E
Douma, Renee A
de Haan, Lianne
Gritters van den Oever, Niels C
Rennenberg, Roger J M W
van Wingen, Guido A
Aries, Marcel J H
Beudel, Martijn
author_sort Ottenhoff, Maarten C
collection PubMed
description OBJECTIVE: Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. DESIGN: Retrospective cohort study. SETTING: A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020. PARTICIPANTS: SARS-CoV-2 positive patients (age ≥18) admitted to the hospital. MAIN OUTCOME MEASURES: 21-day all-cause mortality evaluated by the area under the receiver operator curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The predictive value of age was explored by comparison with age-based rules used in practice and by excluding age from the analysis. RESULTS: 2273 patients were included, of whom 516 had died or discharged to palliative care within 21 days after admission. Five feature sets, including premorbid, clinical presentation and laboratory and radiology values, were derived from 80 features. Additionally, an Analysis of Variance (ANOVA)-based data-driven feature selection selected the 10 features with the highest F values: age, number of home medications, urea nitrogen, lactate dehydrogenase, albumin, oxygen saturation (%), oxygen saturation is measured on room air, oxygen saturation is measured on oxygen therapy, blood gas pH and history of chronic cardiac disease. A linear logistic regression and non-linear tree-based gradient boosting algorithm fitted the data with an AUC of 0.81 (95% CI 0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using the 10 selected features. Both models outperformed age-based decision rules used in practice (AUC of 0.69, 0.65 to 0.74 for age >70). Furthermore, performance remained stable when excluding age as predictor (AUC of 0.78, 0.75 to 0.81). CONCLUSION: Both models showed good performance and had better test characteristics than age-based decision rules, using 10 admission features readily available in Dutch hospitals. The models hold promise to aid decision-making during a hospital bed shortage.
format Online
Article
Text
id pubmed-8290951
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-82909512021-07-20 Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort Ottenhoff, Maarten C Ramos, Lucas A Potters, Wouter Janssen, Marcus L F Hubers, Deborah Hu, Shi Fridgeirsson, Egill A Piña-Fuentes, Dan Thomas, Rajat van der Horst, Iwan C C Herff, Christian Kubben, Pieter Elbers, Paul W G Marquering, Henk A Welling, Max Simsek, Suat de Kruif, Martijn D Dormans, Tom Fleuren, Lucas M Schinkel, Michiel Noordzij, Peter G van den Bergh, Joop P Wyers, Caroline E Buis, David T B Wiersinga, W Joost van den Hout, Ella H C Reidinga, Auke C Rusch, Daisy Sigaloff, Kim C E Douma, Renee A de Haan, Lianne Gritters van den Oever, Niels C Rennenberg, Roger J M W van Wingen, Guido A Aries, Marcel J H Beudel, Martijn BMJ Open Health Informatics OBJECTIVE: Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. DESIGN: Retrospective cohort study. SETTING: A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020. PARTICIPANTS: SARS-CoV-2 positive patients (age ≥18) admitted to the hospital. MAIN OUTCOME MEASURES: 21-day all-cause mortality evaluated by the area under the receiver operator curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The predictive value of age was explored by comparison with age-based rules used in practice and by excluding age from the analysis. RESULTS: 2273 patients were included, of whom 516 had died or discharged to palliative care within 21 days after admission. Five feature sets, including premorbid, clinical presentation and laboratory and radiology values, were derived from 80 features. Additionally, an Analysis of Variance (ANOVA)-based data-driven feature selection selected the 10 features with the highest F values: age, number of home medications, urea nitrogen, lactate dehydrogenase, albumin, oxygen saturation (%), oxygen saturation is measured on room air, oxygen saturation is measured on oxygen therapy, blood gas pH and history of chronic cardiac disease. A linear logistic regression and non-linear tree-based gradient boosting algorithm fitted the data with an AUC of 0.81 (95% CI 0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using the 10 selected features. Both models outperformed age-based decision rules used in practice (AUC of 0.69, 0.65 to 0.74 for age >70). Furthermore, performance remained stable when excluding age as predictor (AUC of 0.78, 0.75 to 0.81). CONCLUSION: Both models showed good performance and had better test characteristics than age-based decision rules, using 10 admission features readily available in Dutch hospitals. The models hold promise to aid decision-making during a hospital bed shortage. BMJ Publishing Group 2021-07-19 /pmc/articles/PMC8290951/ /pubmed/34281922 http://dx.doi.org/10.1136/bmjopen-2020-047347 Text en © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Health Informatics
Ottenhoff, Maarten C
Ramos, Lucas A
Potters, Wouter
Janssen, Marcus L F
Hubers, Deborah
Hu, Shi
Fridgeirsson, Egill A
Piña-Fuentes, Dan
Thomas, Rajat
van der Horst, Iwan C C
Herff, Christian
Kubben, Pieter
Elbers, Paul W G
Marquering, Henk A
Welling, Max
Simsek, Suat
de Kruif, Martijn D
Dormans, Tom
Fleuren, Lucas M
Schinkel, Michiel
Noordzij, Peter G
van den Bergh, Joop P
Wyers, Caroline E
Buis, David T B
Wiersinga, W Joost
van den Hout, Ella H C
Reidinga, Auke C
Rusch, Daisy
Sigaloff, Kim C E
Douma, Renee A
de Haan, Lianne
Gritters van den Oever, Niels C
Rennenberg, Roger J M W
van Wingen, Guido A
Aries, Marcel J H
Beudel, Martijn
Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort
title Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort
title_full Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort
title_fullStr Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort
title_full_unstemmed Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort
title_short Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort
title_sort predicting mortality of individual patients with covid-19: a multicentre dutch cohort
topic Health Informatics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290951/
https://www.ncbi.nlm.nih.gov/pubmed/34281922
http://dx.doi.org/10.1136/bmjopen-2020-047347
work_keys_str_mv AT ottenhoffmaartenc predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT ramoslucasa predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT potterswouter predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT janssenmarcuslf predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT hubersdeborah predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT hushi predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT fridgeirssonegilla predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT pinafuentesdan predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT thomasrajat predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT vanderhorstiwancc predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT herffchristian predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT kubbenpieter predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT elberspaulwg predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT marqueringhenka predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT wellingmax predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT simseksuat predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT dekruifmartijnd predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT dormanstom predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT fleurenlucasm predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT schinkelmichiel predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT noordzijpeterg predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT vandenberghjoopp predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT wyerscarolinee predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT buisdavidtb predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT wiersingawjoost predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT vandenhoutellahc predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT reidingaaukec predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT ruschdaisy predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT sigaloffkimce predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT doumareneea predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT dehaanlianne predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT grittersvandenoevernielsc predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT rennenbergrogerjmw predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT vanwingenguidoa predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT ariesmarceljh predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT beudelmartijn predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort
AT predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort