Cargando…
Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort
OBJECTIVE: Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. DESIGN: Retrospective cohort study. SETTING: A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020. PARTICIPANTS: SARS-CoV-2 positiv...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290951/ https://www.ncbi.nlm.nih.gov/pubmed/34281922 http://dx.doi.org/10.1136/bmjopen-2020-047347 |
_version_ | 1783724554084941824 |
---|---|
author | Ottenhoff, Maarten C Ramos, Lucas A Potters, Wouter Janssen, Marcus L F Hubers, Deborah Hu, Shi Fridgeirsson, Egill A Piña-Fuentes, Dan Thomas, Rajat van der Horst, Iwan C C Herff, Christian Kubben, Pieter Elbers, Paul W G Marquering, Henk A Welling, Max Simsek, Suat de Kruif, Martijn D Dormans, Tom Fleuren, Lucas M Schinkel, Michiel Noordzij, Peter G van den Bergh, Joop P Wyers, Caroline E Buis, David T B Wiersinga, W Joost van den Hout, Ella H C Reidinga, Auke C Rusch, Daisy Sigaloff, Kim C E Douma, Renee A de Haan, Lianne Gritters van den Oever, Niels C Rennenberg, Roger J M W van Wingen, Guido A Aries, Marcel J H Beudel, Martijn |
author_facet | Ottenhoff, Maarten C Ramos, Lucas A Potters, Wouter Janssen, Marcus L F Hubers, Deborah Hu, Shi Fridgeirsson, Egill A Piña-Fuentes, Dan Thomas, Rajat van der Horst, Iwan C C Herff, Christian Kubben, Pieter Elbers, Paul W G Marquering, Henk A Welling, Max Simsek, Suat de Kruif, Martijn D Dormans, Tom Fleuren, Lucas M Schinkel, Michiel Noordzij, Peter G van den Bergh, Joop P Wyers, Caroline E Buis, David T B Wiersinga, W Joost van den Hout, Ella H C Reidinga, Auke C Rusch, Daisy Sigaloff, Kim C E Douma, Renee A de Haan, Lianne Gritters van den Oever, Niels C Rennenberg, Roger J M W van Wingen, Guido A Aries, Marcel J H Beudel, Martijn |
author_sort | Ottenhoff, Maarten C |
collection | PubMed |
description | OBJECTIVE: Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. DESIGN: Retrospective cohort study. SETTING: A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020. PARTICIPANTS: SARS-CoV-2 positive patients (age ≥18) admitted to the hospital. MAIN OUTCOME MEASURES: 21-day all-cause mortality evaluated by the area under the receiver operator curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The predictive value of age was explored by comparison with age-based rules used in practice and by excluding age from the analysis. RESULTS: 2273 patients were included, of whom 516 had died or discharged to palliative care within 21 days after admission. Five feature sets, including premorbid, clinical presentation and laboratory and radiology values, were derived from 80 features. Additionally, an Analysis of Variance (ANOVA)-based data-driven feature selection selected the 10 features with the highest F values: age, number of home medications, urea nitrogen, lactate dehydrogenase, albumin, oxygen saturation (%), oxygen saturation is measured on room air, oxygen saturation is measured on oxygen therapy, blood gas pH and history of chronic cardiac disease. A linear logistic regression and non-linear tree-based gradient boosting algorithm fitted the data with an AUC of 0.81 (95% CI 0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using the 10 selected features. Both models outperformed age-based decision rules used in practice (AUC of 0.69, 0.65 to 0.74 for age >70). Furthermore, performance remained stable when excluding age as predictor (AUC of 0.78, 0.75 to 0.81). CONCLUSION: Both models showed good performance and had better test characteristics than age-based decision rules, using 10 admission features readily available in Dutch hospitals. The models hold promise to aid decision-making during a hospital bed shortage. |
format | Online Article Text |
id | pubmed-8290951 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-82909512021-07-20 Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort Ottenhoff, Maarten C Ramos, Lucas A Potters, Wouter Janssen, Marcus L F Hubers, Deborah Hu, Shi Fridgeirsson, Egill A Piña-Fuentes, Dan Thomas, Rajat van der Horst, Iwan C C Herff, Christian Kubben, Pieter Elbers, Paul W G Marquering, Henk A Welling, Max Simsek, Suat de Kruif, Martijn D Dormans, Tom Fleuren, Lucas M Schinkel, Michiel Noordzij, Peter G van den Bergh, Joop P Wyers, Caroline E Buis, David T B Wiersinga, W Joost van den Hout, Ella H C Reidinga, Auke C Rusch, Daisy Sigaloff, Kim C E Douma, Renee A de Haan, Lianne Gritters van den Oever, Niels C Rennenberg, Roger J M W van Wingen, Guido A Aries, Marcel J H Beudel, Martijn BMJ Open Health Informatics OBJECTIVE: Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. DESIGN: Retrospective cohort study. SETTING: A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020. PARTICIPANTS: SARS-CoV-2 positive patients (age ≥18) admitted to the hospital. MAIN OUTCOME MEASURES: 21-day all-cause mortality evaluated by the area under the receiver operator curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The predictive value of age was explored by comparison with age-based rules used in practice and by excluding age from the analysis. RESULTS: 2273 patients were included, of whom 516 had died or discharged to palliative care within 21 days after admission. Five feature sets, including premorbid, clinical presentation and laboratory and radiology values, were derived from 80 features. Additionally, an Analysis of Variance (ANOVA)-based data-driven feature selection selected the 10 features with the highest F values: age, number of home medications, urea nitrogen, lactate dehydrogenase, albumin, oxygen saturation (%), oxygen saturation is measured on room air, oxygen saturation is measured on oxygen therapy, blood gas pH and history of chronic cardiac disease. A linear logistic regression and non-linear tree-based gradient boosting algorithm fitted the data with an AUC of 0.81 (95% CI 0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using the 10 selected features. Both models outperformed age-based decision rules used in practice (AUC of 0.69, 0.65 to 0.74 for age >70). Furthermore, performance remained stable when excluding age as predictor (AUC of 0.78, 0.75 to 0.81). CONCLUSION: Both models showed good performance and had better test characteristics than age-based decision rules, using 10 admission features readily available in Dutch hospitals. The models hold promise to aid decision-making during a hospital bed shortage. BMJ Publishing Group 2021-07-19 /pmc/articles/PMC8290951/ /pubmed/34281922 http://dx.doi.org/10.1136/bmjopen-2020-047347 Text en © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Health Informatics Ottenhoff, Maarten C Ramos, Lucas A Potters, Wouter Janssen, Marcus L F Hubers, Deborah Hu, Shi Fridgeirsson, Egill A Piña-Fuentes, Dan Thomas, Rajat van der Horst, Iwan C C Herff, Christian Kubben, Pieter Elbers, Paul W G Marquering, Henk A Welling, Max Simsek, Suat de Kruif, Martijn D Dormans, Tom Fleuren, Lucas M Schinkel, Michiel Noordzij, Peter G van den Bergh, Joop P Wyers, Caroline E Buis, David T B Wiersinga, W Joost van den Hout, Ella H C Reidinga, Auke C Rusch, Daisy Sigaloff, Kim C E Douma, Renee A de Haan, Lianne Gritters van den Oever, Niels C Rennenberg, Roger J M W van Wingen, Guido A Aries, Marcel J H Beudel, Martijn Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort |
title | Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort |
title_full | Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort |
title_fullStr | Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort |
title_full_unstemmed | Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort |
title_short | Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort |
title_sort | predicting mortality of individual patients with covid-19: a multicentre dutch cohort |
topic | Health Informatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290951/ https://www.ncbi.nlm.nih.gov/pubmed/34281922 http://dx.doi.org/10.1136/bmjopen-2020-047347 |
work_keys_str_mv | AT ottenhoffmaartenc predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT ramoslucasa predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT potterswouter predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT janssenmarcuslf predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT hubersdeborah predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT hushi predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT fridgeirssonegilla predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT pinafuentesdan predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT thomasrajat predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT vanderhorstiwancc predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT herffchristian predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT kubbenpieter predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT elberspaulwg predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT marqueringhenka predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT wellingmax predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT simseksuat predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT dekruifmartijnd predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT dormanstom predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT fleurenlucasm predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT schinkelmichiel predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT noordzijpeterg predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT vandenberghjoopp predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT wyerscarolinee predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT buisdavidtb predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT wiersingawjoost predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT vandenhoutellahc predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT reidingaaukec predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT ruschdaisy predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT sigaloffkimce predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT doumareneea predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT dehaanlianne predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT grittersvandenoevernielsc predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT rennenbergrogerjmw predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT vanwingenguidoa predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT ariesmarceljh predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT beudelmartijn predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort AT predictingmortalityofindividualpatientswithcovid19amulticentredutchcohort |