Cargando…
Structures and electronic properties of domain walls in BiFeO(3) thin films
Domain walls (DWs) in ferroelectrics are atomically sharp and can be created, erased, and reconfigured within the same physical volume of ferroelectric matrix by external electric fields. They possess a myriad of novel properties and functionalities that are absent in the bulk of the domains, and th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291563/ https://www.ncbi.nlm.nih.gov/pubmed/34691922 http://dx.doi.org/10.1093/nsr/nwz101 |
Sumario: | Domain walls (DWs) in ferroelectrics are atomically sharp and can be created, erased, and reconfigured within the same physical volume of ferroelectric matrix by external electric fields. They possess a myriad of novel properties and functionalities that are absent in the bulk of the domains, and thus could become an essential element in next-generation nanodevices based on ferroelectrics. The knowledge about the structure and properties of ferroelectric DWs not only advances the fundamental understanding of ferroelectrics, but also provides guidance for the design of ferroelectric-based devices. In this article, we provide a review of structures and properties of DWs in one of the most widely studied ferroelectric systems, BiFeO(3) thin films. We correlate their conductivity and photovoltaic properties to the atomic-scale structure and dynamic behaviors of DWs. |
---|