Cargando…
Isoquinolone-4-Carboxylic Acids by Ammonia-Ugi-4CR and Copper-Catalyzed Domino Reaction
[Image: see text] Highly substituted isoquinolone-4-carboxylic acid is an important bioactive scaffold; however, it is challenging to access it in a general and short way. A Cu-catalyzed cascade reaction was successfully designed involving the Ugi postcyclization strategy by using ammonia and 2-halo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291606/ https://www.ncbi.nlm.nih.gov/pubmed/34184894 http://dx.doi.org/10.1021/acs.joc.1c01170 |
Sumario: | [Image: see text] Highly substituted isoquinolone-4-carboxylic acid is an important bioactive scaffold; however, it is challenging to access it in a general and short way. A Cu-catalyzed cascade reaction was successfully designed involving the Ugi postcyclization strategy by using ammonia and 2-halobenzoic acids as crucial building blocks. Privileged polysubstituted isoquinolin-1(2H)-ones were constructed in a combinatorial format with generally moderate to good yields. The protocol, with a ligand-free catalytic system, shows a broad substrate scope and good functional group tolerance toward excellent molecular diversity. Free 4-carboxy-isoquinolone is now for the first time generally accessible by a convergent multicomponent reaction protocol. |
---|