Cargando…

Generalized Score Matching for Non-Negative Data

A common challenge in estimating parameters of probability density functions is the intractability of the normalizing constant. While in such cases maximum likelihood estimation may be implemented using numerical integration, the approach becomes computationally intensive. The score matching method...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Shiqing, Drton, Mathias, Shojaie, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291733/
https://www.ncbi.nlm.nih.gov/pubmed/34290571
_version_ 1783724698750681088
author Yu, Shiqing
Drton, Mathias
Shojaie, Ali
author_facet Yu, Shiqing
Drton, Mathias
Shojaie, Ali
author_sort Yu, Shiqing
collection PubMed
description A common challenge in estimating parameters of probability density functions is the intractability of the normalizing constant. While in such cases maximum likelihood estimation may be implemented using numerical integration, the approach becomes computationally intensive. The score matching method of Hyvärinen (2005) avoids direct calculation of the normalizing constant and yields closed-form estimates for exponential families of continuous distributions over [Formula: see text]. Hyvärinen (2007) extended the approach to distributions supported on the non-negative orthant, [Formula: see text]. In this paper, we give a generalized form of score matching for non-negative data that improves estimation efficiency. As an example, we consider a general class of pairwise interaction models. Addressing an overlooked inexistence problem, we generalize the regularized score matching method of Lin et al. (2016) and improve its theoretical guarantees for non-negative Gaussian graphical models.
format Online
Article
Text
id pubmed-8291733
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-82917332021-07-20 Generalized Score Matching for Non-Negative Data Yu, Shiqing Drton, Mathias Shojaie, Ali J Mach Learn Res Article A common challenge in estimating parameters of probability density functions is the intractability of the normalizing constant. While in such cases maximum likelihood estimation may be implemented using numerical integration, the approach becomes computationally intensive. The score matching method of Hyvärinen (2005) avoids direct calculation of the normalizing constant and yields closed-form estimates for exponential families of continuous distributions over [Formula: see text]. Hyvärinen (2007) extended the approach to distributions supported on the non-negative orthant, [Formula: see text]. In this paper, we give a generalized form of score matching for non-negative data that improves estimation efficiency. As an example, we consider a general class of pairwise interaction models. Addressing an overlooked inexistence problem, we generalize the regularized score matching method of Lin et al. (2016) and improve its theoretical guarantees for non-negative Gaussian graphical models. 2019-04 /pmc/articles/PMC8291733/ /pubmed/34290571 Text en https://creativecommons.org/licenses/by/4.0/License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at http://jmlr.org/papers/v20/18-278.html.
spellingShingle Article
Yu, Shiqing
Drton, Mathias
Shojaie, Ali
Generalized Score Matching for Non-Negative Data
title Generalized Score Matching for Non-Negative Data
title_full Generalized Score Matching for Non-Negative Data
title_fullStr Generalized Score Matching for Non-Negative Data
title_full_unstemmed Generalized Score Matching for Non-Negative Data
title_short Generalized Score Matching for Non-Negative Data
title_sort generalized score matching for non-negative data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291733/
https://www.ncbi.nlm.nih.gov/pubmed/34290571
work_keys_str_mv AT yushiqing generalizedscorematchingfornonnegativedata
AT drtonmathias generalizedscorematchingfornonnegativedata
AT shojaieali generalizedscorematchingfornonnegativedata