Cargando…
Deep learning neural networks to differentiate Stafne’s bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography
This study aimed to develop a high-performance deep learning algorithm to differentiate Stafne’s bone cavity (SBC) from cysts and tumors of the jaw based on images acquired from various panoramic radiographic systems. Data sets included 176 Stafne’s bone cavities and 282 odontogenic cysts and tumors...
Autores principales: | Lee, Ari, Kim, Min Su, Han, Sang-Sun, Park, PooGyeon, Lee, Chena, Yun, Jong Pil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291753/ https://www.ncbi.nlm.nih.gov/pubmed/34283883 http://dx.doi.org/10.1371/journal.pone.0254997 |
Ejemplares similares
-
PARAMETERS IN PANORAMIC RADIOGRAPHY FOR DIFFERENTIATION OF RADIOLUCENT LESIONS
por: Raitz, Ricardo, et al.
Publicado: (2009) -
Stafne Bone Cavity of the Mandible
por: Lee, Jae Il, et al.
Publicado: (2016) -
Stafne bone cavity with ectopic salivary gland tissue in the anterior of mandible
por: Deyhimi, Parviz, et al.
Publicado: (2016) -
Stafne bone defect of the molar region of the mandible
por: Chen, Mu-Hsiung, et al.
Publicado: (2019) -
Bilateral Stafne Bone Cavity in the Body of the Mandible: An Unusual Case Report and Literature Review
por: Pahadia, Mayank, et al.
Publicado: (2023)