Cargando…
Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights
Endophytic fungi and bacteria are the most ubiquitous and representative commensal members that have been studied so far in various higher plants. Within colonization and interaction with their host plants, endophytic microbiota are reportedly to modulate not only the host’s growth but also holobion...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291792/ https://www.ncbi.nlm.nih.gov/pubmed/32881650 http://dx.doi.org/10.1080/21655979.2020.1816788 |
_version_ | 1783724709610782720 |
---|---|
author | Xie, Hengtong Feng, Xiaoxiao Wang, Mengcen Wang, Yuefei Kumar Awasthi, Mukesh Xu, Ping |
author_facet | Xie, Hengtong Feng, Xiaoxiao Wang, Mengcen Wang, Yuefei Kumar Awasthi, Mukesh Xu, Ping |
author_sort | Xie, Hengtong |
collection | PubMed |
description | Endophytic fungi and bacteria are the most ubiquitous and representative commensal members that have been studied so far in various higher plants. Within colonization and interaction with their host plants, endophytic microbiota are reportedly to modulate not only the host’s growth but also holobiont resilience to abiotic and biotic stresses, providing a natural reservoir and a promising solution for sustainable agricultural development challenged by global climate change. Moreover, possessing the talent to produce a wide array of high-value natural products, plant endophytic microbiota also serve as an alternative way for novel drug discovery. In this review, tea, one of the world’s three largest nonalcoholic beverages and a worldwide economic woody crop, was highlighted in the context of endophytic microbiota. We explore the recent studies regarding isolation approaches, distribution characteristics and diversity, and also biological functions of endophytic microbiota in Camellia sinensis (L.) O. Kuntze. Profoundly, the future insight into interaction mechanism between endophytic microbiota and tea plants will shed light on in-depth exploration of tea microbial resources. |
format | Online Article Text |
id | pubmed-8291792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-82917922021-09-01 Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights Xie, Hengtong Feng, Xiaoxiao Wang, Mengcen Wang, Yuefei Kumar Awasthi, Mukesh Xu, Ping Bioengineered Review Endophytic fungi and bacteria are the most ubiquitous and representative commensal members that have been studied so far in various higher plants. Within colonization and interaction with their host plants, endophytic microbiota are reportedly to modulate not only the host’s growth but also holobiont resilience to abiotic and biotic stresses, providing a natural reservoir and a promising solution for sustainable agricultural development challenged by global climate change. Moreover, possessing the talent to produce a wide array of high-value natural products, plant endophytic microbiota also serve as an alternative way for novel drug discovery. In this review, tea, one of the world’s three largest nonalcoholic beverages and a worldwide economic woody crop, was highlighted in the context of endophytic microbiota. We explore the recent studies regarding isolation approaches, distribution characteristics and diversity, and also biological functions of endophytic microbiota in Camellia sinensis (L.) O. Kuntze. Profoundly, the future insight into interaction mechanism between endophytic microbiota and tea plants will shed light on in-depth exploration of tea microbial resources. Taylor & Francis 2020-09-15 /pmc/articles/PMC8291792/ /pubmed/32881650 http://dx.doi.org/10.1080/21655979.2020.1816788 Text en © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Xie, Hengtong Feng, Xiaoxiao Wang, Mengcen Wang, Yuefei Kumar Awasthi, Mukesh Xu, Ping Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights |
title | Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights |
title_full | Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights |
title_fullStr | Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights |
title_full_unstemmed | Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights |
title_short | Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights |
title_sort | implications of endophytic microbiota in camellia sinensis: a review on current understanding and future insights |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291792/ https://www.ncbi.nlm.nih.gov/pubmed/32881650 http://dx.doi.org/10.1080/21655979.2020.1816788 |
work_keys_str_mv | AT xiehengtong implicationsofendophyticmicrobiotaincamelliasinensisareviewoncurrentunderstandingandfutureinsights AT fengxiaoxiao implicationsofendophyticmicrobiotaincamelliasinensisareviewoncurrentunderstandingandfutureinsights AT wangmengcen implicationsofendophyticmicrobiotaincamelliasinensisareviewoncurrentunderstandingandfutureinsights AT wangyuefei implicationsofendophyticmicrobiotaincamelliasinensisareviewoncurrentunderstandingandfutureinsights AT kumarawasthimukesh implicationsofendophyticmicrobiotaincamelliasinensisareviewoncurrentunderstandingandfutureinsights AT xuping implicationsofendophyticmicrobiotaincamelliasinensisareviewoncurrentunderstandingandfutureinsights |