Cargando…

Study on Microbial Community Succession and Functional Analysis during Biodegradation of Mushroom Residue

In this study, 16S rRNA high-throughput sequencing technology was used to analyze the composition and diversity of bacterial and fungal communities in mushroom residue samples at different composting stages. During the composting process, the maximum temperature in the center of the pile can reach 5...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chaonan, Wang, Yuxin, Ru, Hua, He, Ting, Sun, Nan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292071/
https://www.ncbi.nlm.nih.gov/pubmed/34337038
http://dx.doi.org/10.1155/2021/6620574
Descripción
Sumario:In this study, 16S rRNA high-throughput sequencing technology was used to analyze the composition and diversity of bacterial and fungal communities in mushroom residue samples at different composting stages. During the composting process, the maximum temperature in the center of the pile can reach 52.4°C, and the temperature above 50°C has been maintained for about 8 days. The results showed that Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, and Chloroflexi were the main microorganisms in the composting process, accounting for 98.9%-99.7% of the total bacteria. Furthermore, in order to obtain the protein expressed in each stage of composting, the nonstandard quantitative method (label free) was used to analyze it quantitatively by mass spectrometry, anda total of 22815 proteins were identified. It indicated that the number of identified proteins related to cellulose decomposition and the number of differentially expressed proteins were significantly enriched, and the functional proteins related to cellulose decomposition had significant stage correspondence.