Cargando…

Geographic patterns of seed trait variation in an invasive species: how much can close populations differ?

Seeds play a major role in plant species persistence and expansion, and therefore they are essential when modeling species dynamics. However, homogeneity in seed traits is generally assumed, underestimating intraspecific trait variability across the geographic space, which might bias species success...

Descripción completa

Detalles Bibliográficos
Autores principales: Fenollosa, Erola, Jené, Laia, Munné-Bosch, Sergi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292299/
https://www.ncbi.nlm.nih.gov/pubmed/34216272
http://dx.doi.org/10.1007/s00442-021-04971-2
Descripción
Sumario:Seeds play a major role in plant species persistence and expansion, and therefore they are essential when modeling species dynamics. However, homogeneity in seed traits is generally assumed, underestimating intraspecific trait variability across the geographic space, which might bias species success models. The aim of this study was to evaluate the existence and consequences of interpopulation variability in seed traits of the invasive species Carpobrotus edulis at different geographical scales. We measured seed production, morphology, vigour and longevity of nine populations of C. edulis along the Catalan coast (NE Spain) from three differentiated zones with a human presence gradient. Geographic distances between populations were contrasted against individual and multivariate trait distances to explore trait variation along the territory, evaluating the role of bioclimatic variables and human density of the different zones. The analysis revealed high interpopulation variability that was not explained by geographic distance, as regardless of the little distance between some populations (< 0.5 km), significant differences were found in several seed traits. Seed production, germination, and persistence traits showed the strongest spatial variability up to 6000% of percent trait variability between populations, leading to differentiated C. edulis soil seed bank dynamics at small distances, which may demand differentiated strategies for a cost-effective species management. Seed trait variability was influenced by human density but also bioclimatic conditions, suggesting a potential impact of increased anthropogenic pressure and climate shifts. Geographic interpopulation trait variation should be included in ecological models and will be important for assessing species responses to environmental heterogeneity and change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00442-021-04971-2.