Cargando…

A generalizable and accessible approach to machine learning with global satellite imagery

Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of sat...

Descripción completa

Detalles Bibliográficos
Autores principales: Rolf, Esther, Proctor, Jonathan, Carleton, Tamma, Bolliger, Ian, Shankar, Vaishaal, Ishihara, Miyabi, Recht, Benjamin, Hsiang, Solomon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292408/
https://www.ncbi.nlm.nih.gov/pubmed/34285205
http://dx.doi.org/10.1038/s41467-021-24638-z
_version_ 1783724826928611328
author Rolf, Esther
Proctor, Jonathan
Carleton, Tamma
Bolliger, Ian
Shankar, Vaishaal
Ishihara, Miyabi
Recht, Benjamin
Hsiang, Solomon
author_facet Rolf, Esther
Proctor, Jonathan
Carleton, Tamma
Bolliger, Ian
Shankar, Vaishaal
Ishihara, Miyabi
Recht, Benjamin
Hsiang, Solomon
author_sort Rolf, Esther
collection PubMed
description Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g., forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance.
format Online
Article
Text
id pubmed-8292408
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82924082021-07-23 A generalizable and accessible approach to machine learning with global satellite imagery Rolf, Esther Proctor, Jonathan Carleton, Tamma Bolliger, Ian Shankar, Vaishaal Ishihara, Miyabi Recht, Benjamin Hsiang, Solomon Nat Commun Article Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g., forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance. Nature Publishing Group UK 2021-07-20 /pmc/articles/PMC8292408/ /pubmed/34285205 http://dx.doi.org/10.1038/s41467-021-24638-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Rolf, Esther
Proctor, Jonathan
Carleton, Tamma
Bolliger, Ian
Shankar, Vaishaal
Ishihara, Miyabi
Recht, Benjamin
Hsiang, Solomon
A generalizable and accessible approach to machine learning with global satellite imagery
title A generalizable and accessible approach to machine learning with global satellite imagery
title_full A generalizable and accessible approach to machine learning with global satellite imagery
title_fullStr A generalizable and accessible approach to machine learning with global satellite imagery
title_full_unstemmed A generalizable and accessible approach to machine learning with global satellite imagery
title_short A generalizable and accessible approach to machine learning with global satellite imagery
title_sort generalizable and accessible approach to machine learning with global satellite imagery
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292408/
https://www.ncbi.nlm.nih.gov/pubmed/34285205
http://dx.doi.org/10.1038/s41467-021-24638-z
work_keys_str_mv AT rolfesther ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT proctorjonathan ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT carletontamma ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT bolligerian ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT shankarvaishaal ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT ishiharamiyabi ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT rechtbenjamin ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT hsiangsolomon ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT rolfesther generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT proctorjonathan generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT carletontamma generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT bolligerian generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT shankarvaishaal generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT ishiharamiyabi generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT rechtbenjamin generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery
AT hsiangsolomon generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery