Cargando…
A generalizable and accessible approach to machine learning with global satellite imagery
Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of sat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292408/ https://www.ncbi.nlm.nih.gov/pubmed/34285205 http://dx.doi.org/10.1038/s41467-021-24638-z |
_version_ | 1783724826928611328 |
---|---|
author | Rolf, Esther Proctor, Jonathan Carleton, Tamma Bolliger, Ian Shankar, Vaishaal Ishihara, Miyabi Recht, Benjamin Hsiang, Solomon |
author_facet | Rolf, Esther Proctor, Jonathan Carleton, Tamma Bolliger, Ian Shankar, Vaishaal Ishihara, Miyabi Recht, Benjamin Hsiang, Solomon |
author_sort | Rolf, Esther |
collection | PubMed |
description | Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g., forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance. |
format | Online Article Text |
id | pubmed-8292408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-82924082021-07-23 A generalizable and accessible approach to machine learning with global satellite imagery Rolf, Esther Proctor, Jonathan Carleton, Tamma Bolliger, Ian Shankar, Vaishaal Ishihara, Miyabi Recht, Benjamin Hsiang, Solomon Nat Commun Article Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g., forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance. Nature Publishing Group UK 2021-07-20 /pmc/articles/PMC8292408/ /pubmed/34285205 http://dx.doi.org/10.1038/s41467-021-24638-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Rolf, Esther Proctor, Jonathan Carleton, Tamma Bolliger, Ian Shankar, Vaishaal Ishihara, Miyabi Recht, Benjamin Hsiang, Solomon A generalizable and accessible approach to machine learning with global satellite imagery |
title | A generalizable and accessible approach to machine learning with global satellite imagery |
title_full | A generalizable and accessible approach to machine learning with global satellite imagery |
title_fullStr | A generalizable and accessible approach to machine learning with global satellite imagery |
title_full_unstemmed | A generalizable and accessible approach to machine learning with global satellite imagery |
title_short | A generalizable and accessible approach to machine learning with global satellite imagery |
title_sort | generalizable and accessible approach to machine learning with global satellite imagery |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292408/ https://www.ncbi.nlm.nih.gov/pubmed/34285205 http://dx.doi.org/10.1038/s41467-021-24638-z |
work_keys_str_mv | AT rolfesther ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT proctorjonathan ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT carletontamma ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT bolligerian ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT shankarvaishaal ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT ishiharamiyabi ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT rechtbenjamin ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT hsiangsolomon ageneralizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT rolfesther generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT proctorjonathan generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT carletontamma generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT bolligerian generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT shankarvaishaal generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT ishiharamiyabi generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT rechtbenjamin generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery AT hsiangsolomon generalizableandaccessibleapproachtomachinelearningwithglobalsatelliteimagery |