Cargando…
A generalizable and accessible approach to machine learning with global satellite imagery
Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of sat...
Autores principales: | Rolf, Esther, Proctor, Jonathan, Carleton, Tamma, Bolliger, Ian, Shankar, Vaishaal, Ishihara, Miyabi, Recht, Benjamin, Hsiang, Solomon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292408/ https://www.ncbi.nlm.nih.gov/pubmed/34285205 http://dx.doi.org/10.1038/s41467-021-24638-z |
Ejemplares similares
-
Shelter tents mapping by machine learning and satellite imagery
por: Cheng, Hsiu-Chi
Publicado: (2023) -
Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning
por: Agrawal, Ayush, et al.
Publicado: (2021) -
The UNOSAT-GRID Project: Access to Satellite Imagery through the Grid Environment
por: Méndez-Lorenzo, P, et al.
Publicado: (2007) -
Global evidence for ultraviolet radiation decreasing COVID-19 growth rates
por: Carleton, Tamma, et al.
Publicado: (2021) -
Automatic Target Detection from Satellite Imagery Using Machine Learning
por: Tahir, Arsalan, et al.
Publicado: (2022)