Cargando…

Survival analysis of patients with primary breast duct carcinoma and lung adenocarcinoma: a population-based study from SEER

The appeal to enroll patients with primary breast and lung cancer in clinical trials is increasing, but survival of these two primary cancers remains to be elucidated. This study analyzed the prognosis of primary breast duct carcinoma with subsequent lung adenocarcinoma (BCLA) and primary breast duc...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Fengyuan, Cheng, Mingliang, Jiang, Liang, Zhao, Xiaoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292419/
https://www.ncbi.nlm.nih.gov/pubmed/34285322
http://dx.doi.org/10.1038/s41598-021-94357-4
Descripción
Sumario:The appeal to enroll patients with primary breast and lung cancer in clinical trials is increasing, but survival of these two primary cancers remains to be elucidated. This study analyzed the prognosis of primary breast duct carcinoma with subsequent lung adenocarcinoma (BCLA) and primary breast duct carcinoma with prior lung adenocarcinoma (LABC). Cohorts of 3,515 patients with BCLA and 654 patients with LABC were identified from the Surveillance, Epidemiology, and End Results database. Patients were classified into simultaneous two primary cancer (sTPC), metachronous two primary cancer (mTPC1), or mTPC2 groups when the interval times between breast and lung cancer were within 6 months, between 7 and 60 months, or over 60 months, respectively. The propensity score matching program (PSM) was applied to determine the survival of BCLA/LABC relative to single breast/lung cancer. Cox proportional hazard regression model and competing risk modes were performed to identify confounders associated with all-cause and cancer-specific death, respectively. Survival of patients with LABC/BCLA relative to single breast/lung cancer was accessed via median survival time. The survival of patients with BCLA/LABC was generally poor compared with the survival of those with single breast cancer. The PSM-estimated HR in the sTPC group with BCLA and in the mTPC1 and mTPC2 groups with LABC were 0.75 (95% CI 0.62–0.90), 0.52 (95% CI 0.27–0.98), and 0.36 (95% CI 0.20–0.65), respectively, whereas the SHRs were 0.80 (95% CI 0.66–0.97), 0.68 (95% CI 0.34–1.34), and 0.46 (95% CI 0.27–0.80), respectively, compared with those in the single lung cancer group. By contrast, the survival rates of the remaining patients did not differ. The median survival times since secondary malignancy were 42, 23, and 20 months in the sTPC, mTPC1, and mTPC2 groups with BCLA, respectively, and 18, 60, and 180 months in those with LABC, respectively. For patients with BCLA, the adjusted Cox regression suggested incidences of all-cause deaths in mTPC1group were statically higher than those in sTPC group, whereas the incidences of all-cause and cancer-specific death in the mTPC1 and mTPC2 groups were statistically lower than those in the sTPC group. The prognosis of patients with breast cancer and subsequent lung cancer of over 18 months was not significantly different than that of single lung cancer, which supported the profound appeal to increase the involvement of these two primary cancers in potential beneficial clinical trials. For patients with lung cancer and prior breast cancer of within 6 months and subsequent breast cancer of over 18 months, prognosis was improved relative to single lung cancer. Therefore, additional attention is needed to eliminate the potential bias may when these patients are recruited in the clinical trials.