Cargando…
The impact of site-specific digital histology signatures on deep learning model accuracy and bias
The Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital histology. Deep learning (DL) models have been trained on TCGA to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. However, we demonstrate that these...
Autores principales: | Howard, Frederick M., Dolezal, James, Kochanny, Sara, Schulte, Jefree, Chen, Heather, Heij, Lara, Huo, Dezheng, Nanda, Rita, Olopade, Olufunmilayo I., Kather, Jakob N., Cipriani, Nicole, Grossman, Robert L., Pearson, Alexander T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292530/ https://www.ncbi.nlm.nih.gov/pubmed/34285218 http://dx.doi.org/10.1038/s41467-021-24698-1 |
Ejemplares similares
-
Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence
por: Howard, Frederick M., et al.
Publicado: (2023) -
Deep learning generates synthetic cancer histology for explainability and education
por: Dolezal, James M., et al.
Publicado: (2023) -
Response to Treatment, Racial and Ethnic Disparity, and Survival in Patients With Breast Cancer Undergoing Neoadjuvant Chemotherapy in the US
por: Shubeck, Sarah, et al.
Publicado: (2023) -
Clinicopathologic Characteristics and Prognosis of ERBB2-Low Breast Cancer Among Patients in the National Cancer Database
por: Peiffer, Daniel S., et al.
Publicado: (2023) -
Demographic and Clinical Characteristics Associated With Familiarity, Interest, and Use of Integrative Therapies Among Patients With Breast Cancer
por: Freeman, Jincong Q., et al.
Publicado: (2023)