Cargando…

A novel method to determine linac mechanical isocenter position and size and examples of specific QA applications

The most important geometric characteristic of stereotactic treatment is the accuracy of positioning the target at the treatment isocenter and the accuracy of directing the radiation beam at the treatment isocenter. Commonly, the radiation isocenter is used as the reference for the treatment isocent...

Descripción completa

Detalles Bibliográficos
Autores principales: Chojnowski, Jacek M., Sykes, Jonathan R., Thwaites, David I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292690/
https://www.ncbi.nlm.nih.gov/pubmed/34056850
http://dx.doi.org/10.1002/acm2.13257
Descripción
Sumario:The most important geometric characteristic of stereotactic treatment is the accuracy of positioning the target at the treatment isocenter and the accuracy of directing the radiation beam at the treatment isocenter. Commonly, the radiation isocenter is used as the reference for the treatment isocenter, but its method of localization is not strictly defined, and it depends on the linac‐specific beam steering parameters. A novel method is presented for determining the linac mechanical isocenter position and size based on the localization of the collimator axis of rotation at arbitrary gantry angle. The collimator axis of rotation position is determined from the radiation beam center position corrected for the focal spot offset. The focal spot offset is determined using the image center shift method with a custom‐design rigid phantom with two sets of ball‐bearings. Three specific quality assurance (QA) applications and assessment methods are also presented to demonstrate the functionality of linac mechanical isocenter position and size determination in clinical practice. The first is a mechanical and radiation isocenters coincidence test suitable for quick congruence assessment of these two isocenters for a selected energy, usually required after a nonroutine linac repair and/or energy adjustment. The second is a stereotactic beam isocentricity assessment suitable for pretreatment stereotactic QA. The third is a comprehensive linac geometrical performance test suitable for routine linac QA. The uncertainties of the method for determining mechanical isocenter position and size were measured to be 0.05 mm and 0.04 mm, respectively, using four available photon energies, and were significantly smaller than those of determining the radiation isocenter position and size, which were 0.36 mm and 0.12 mm respectively. It is therefore recommended that the mechanical isocenter position and size be used as the reference linac treatment isocenter and a linac mechanical characteristic parameter respectively.