Cargando…
Automated data abstraction for quality surveillance and outcome assessment in radiation oncology
Rigorous radiotherapy quality surveillance and comprehensive outcome assessment require electronic capture and automatic abstraction of clinical, radiation treatment planning, and delivery data. We present the design and implementation framework of an integrated data abstraction, aggregation, and st...
Autores principales: | Kapoor, Rishabh, Sleeman, William C., Nalluri, Joseph J., Turner, Paul, Bose, Priyankar, Cherevko, Andrii, Srinivasan, Sriram, Syed, Khajamoinuddin, Ghosh, Preetam, Hagan, Michael, Palta, Jatinder R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292697/ https://www.ncbi.nlm.nih.gov/pubmed/34101349 http://dx.doi.org/10.1002/acm2.13308 |
Ejemplares similares
-
Automatic Incident Triage in Radiation Oncology Incident Learning System
por: Syed, Khajamoinuddin, et al.
Publicado: (2020) -
Multi-View Data Integration Methods for Radiotherapy Structure Name Standardization
por: Syed, Khajamoinuddin, et al.
Publicado: (2021) -
Integrated Natural Language Processing and Machine Learning Models for Standardizing Radiotherapy Structure Names
por: Syed, Khajamoinuddin, et al.
Publicado: (2020) -
Infrastructure tools to support an effective Radiation Oncology Learning Health System
por: Kapoor, Rishabh, et al.
Publicado: (2023) -
3D deep convolution neural network for radiation pneumonitis prediction following stereotactic body radiotherapy
por: Kapoor, Rishabh, et al.
Publicado: (2022)