Cargando…
Variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird
Identifying environmental correlates driving space-use strategies can be critical for predicting population dynamics; however, such information can be difficult to attain for small mobile species such as migratory songbirds. We combined radio-telemetry and high-resolution GPS tracking to examine spa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292764/ https://www.ncbi.nlm.nih.gov/pubmed/34284621 http://dx.doi.org/10.1098/rspb.2021.1220 |
_version_ | 1783724889863094272 |
---|---|
author | Stanley, Calandra Q. Dudash, Michele R. Ryder, Thomas B. Gregory Shriver, W. Marra, Peter P. |
author_facet | Stanley, Calandra Q. Dudash, Michele R. Ryder, Thomas B. Gregory Shriver, W. Marra, Peter P. |
author_sort | Stanley, Calandra Q. |
collection | PubMed |
description | Identifying environmental correlates driving space-use strategies can be critical for predicting population dynamics; however, such information can be difficult to attain for small mobile species such as migratory songbirds. We combined radio-telemetry and high-resolution GPS tracking to examine space-use strategies under different moisture gradients for wood thrush (Hylocichla mustelina). We explored the role moisture plays in driving food abundance and, in turn, space-use strategies at a wintering site in Belize across 3 years. Individuals occupying drier habitats experienced lower food abundance and poorer body condition. Using data from our radio-tracked study population and GPS tracking from across five breeding populations, we detected low rates of overwinter site persistence across the wood thrush wintering range. Contrary to expectations, individuals in wetter habitats were more likely to engage in permanent mid-winter relocations, up to 148 km. We suggest facultative movements are instead a condition-dependent strategy that enables wintering wood thrush to locate alternative habitat as food availability declines throughout the dry season. Increased aridity is predicted across the wintering range of wood thrush, and future research should delve deeper into understanding how moisture impacts within and between season space-use dynamics and its ultimate impact on the population dynamics of this declining species. |
format | Online Article Text |
id | pubmed-8292764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-82927642021-07-31 Variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird Stanley, Calandra Q. Dudash, Michele R. Ryder, Thomas B. Gregory Shriver, W. Marra, Peter P. Proc Biol Sci Ecology Identifying environmental correlates driving space-use strategies can be critical for predicting population dynamics; however, such information can be difficult to attain for small mobile species such as migratory songbirds. We combined radio-telemetry and high-resolution GPS tracking to examine space-use strategies under different moisture gradients for wood thrush (Hylocichla mustelina). We explored the role moisture plays in driving food abundance and, in turn, space-use strategies at a wintering site in Belize across 3 years. Individuals occupying drier habitats experienced lower food abundance and poorer body condition. Using data from our radio-tracked study population and GPS tracking from across five breeding populations, we detected low rates of overwinter site persistence across the wood thrush wintering range. Contrary to expectations, individuals in wetter habitats were more likely to engage in permanent mid-winter relocations, up to 148 km. We suggest facultative movements are instead a condition-dependent strategy that enables wintering wood thrush to locate alternative habitat as food availability declines throughout the dry season. Increased aridity is predicted across the wintering range of wood thrush, and future research should delve deeper into understanding how moisture impacts within and between season space-use dynamics and its ultimate impact on the population dynamics of this declining species. The Royal Society 2021-07-28 2021-07-21 /pmc/articles/PMC8292764/ /pubmed/34284621 http://dx.doi.org/10.1098/rspb.2021.1220 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Ecology Stanley, Calandra Q. Dudash, Michele R. Ryder, Thomas B. Gregory Shriver, W. Marra, Peter P. Variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird |
title | Variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird |
title_full | Variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird |
title_fullStr | Variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird |
title_full_unstemmed | Variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird |
title_short | Variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird |
title_sort | variable tropical moisture and food availability underlie mixed winter space-use strategies in a migratory songbird |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292764/ https://www.ncbi.nlm.nih.gov/pubmed/34284621 http://dx.doi.org/10.1098/rspb.2021.1220 |
work_keys_str_mv | AT stanleycalandraq variabletropicalmoistureandfoodavailabilityunderliemixedwinterspaceusestrategiesinamigratorysongbird AT dudashmicheler variabletropicalmoistureandfoodavailabilityunderliemixedwinterspaceusestrategiesinamigratorysongbird AT ryderthomasb variabletropicalmoistureandfoodavailabilityunderliemixedwinterspaceusestrategiesinamigratorysongbird AT gregoryshriverw variabletropicalmoistureandfoodavailabilityunderliemixedwinterspaceusestrategiesinamigratorysongbird AT marrapeterp variabletropicalmoistureandfoodavailabilityunderliemixedwinterspaceusestrategiesinamigratorysongbird |