Cargando…
Preparation, Properties and Cell Biocompatibility of Room Temperature LCST-Hydrogels Based on Thermoresponsive PEO Stars
A series of star and linear polymers based on a poly(ethylene oxide) core and poly(diethylene glycol ethyl ether acrylate) outer arms were synthesised by atom-transfer radical polymerization. The polydispersity of the polymers were low, showing good control of initiation and growth. They all showed...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293143/ https://www.ncbi.nlm.nih.gov/pubmed/34287296 http://dx.doi.org/10.3390/gels7030084 |
Sumario: | A series of star and linear polymers based on a poly(ethylene oxide) core and poly(diethylene glycol ethyl ether acrylate) outer arms were synthesised by atom-transfer radical polymerization. The polydispersity of the polymers were low, showing good control of initiation and growth. They all showed lower critical solution (LCST) behaviour, and at 30% concentration most gelled at or below room temperature. The behaviour depended on the number and length of the arms, with the polymers with longer arms gelling at a lower temperature and producing stiffer gels. The shear modulus of the gels varied between 1 and 48 kPa, with the gelling temperature varying between 16 and 23 °C. Attempted cell cultures with the polymers proved unsuccessful, which was determined to be due to the high concentration of polymers needed for gelling. |
---|