Cargando…

GLUT1 Expression in Cutaneous Sebaceous Lesions Determined by Immunohistochemical Staining Patterns

GLUT1 is a membrane associated carrier protein that functions in the physiologic transport of glucose across cell membranes. Multiple studies have shown an increased GLUT1 expression in various tumor types and a role in cancer prognosis. The aim of this study was to determine whether cutaneous sebac...

Descripción completa

Detalles Bibliográficos
Autores principales: Barron, Cynthia Reyes, Smoller, Bruce R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293182/
https://www.ncbi.nlm.nih.gov/pubmed/34287324
http://dx.doi.org/10.3390/dermatopathology8030031
Descripción
Sumario:GLUT1 is a membrane associated carrier protein that functions in the physiologic transport of glucose across cell membranes. Multiple studies have shown an increased GLUT1 expression in various tumor types and a role in cancer prognosis. The aim of this study was to determine whether cutaneous sebaceous lesions have a differential expression of GLUT1 by immunohistochemistry (IHC). GLUT1 IHC was performed on excision specimens of ten cases of sebaceous carcinoma, nine of sebaceoma, ten of sebaceous adenoma, and ten of sebaceous hyperplasia. Intense, diffuse cytoplasmic staining was observed in sebaceous carcinoma. The pattern of GLUT1 staining in sebaceomas and sebaceous adenomas consisted of a gradient of intense cytoplasmic staining in the basaloid cells with a decreased intensity to membranous staining only and absent staining in mature sebaceous cells. In lesions of sebaceous hyperplasia, GLUT1 staining outlined the basal layer of each gland; cytoplasmic staining was minimal to absent. Increased cytoplasmic staining of GLUT1 may correlate with cellular metabolic and proliferative activity. GLUT1 has potential utility in differentiating sebaceous lesions.