Cargando…

ResidueFinder: extracting individual residue mentions from protein literature

BACKGROUND: The revolution in molecular biology has shown how protein function and structure are based on specific sequences of amino acids. Thus, an important feature in many papers is the mention of the significance of individual amino acids in the context of the entire sequence of the protein. Mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Becker, Ton E, Jakobsson, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293528/
https://www.ncbi.nlm.nih.gov/pubmed/34289903
http://dx.doi.org/10.1186/s13326-021-00243-3
Descripción
Sumario:BACKGROUND: The revolution in molecular biology has shown how protein function and structure are based on specific sequences of amino acids. Thus, an important feature in many papers is the mention of the significance of individual amino acids in the context of the entire sequence of the protein. MutationFinder is a widely used program for finding mentions of specific mutations in texts. We report on augmenting the positive attributes of MutationFinder with a more inclusive regular expression list to create ResidueFinder, which finds mentions of native amino acids as well as mutations. We also consider parameter options for both ResidueFinder and MutationFinder to explore trade-offs between precision, recall, and computational efficiency. We test our methods and software in full text as well as abstracts. RESULTS: We find there is much more variety of formats for mentioning residues in the entire text of papers than in abstracts alone. Failure to take these multiple formats into account results in many false negatives in the program. Since MutationFinder, like several other programs, was primarily tested on abstracts, we found it necessary to build an expanded regular expression list to achieve acceptable recall in full text searches. We also discovered a number of artifacts arising from PDF to text conversion, which we wrote elements in the regular expression library to address. Taking into account those factors resulted in high recall on randomly selected primary research articles. We also developed a streamlined regular expression (called “cut”) which enables a several hundredfold speedup in both MutationFinder and ResidueFinder with only a modest compromise of recall. All regular expressions were tested using expanded F-measure statistics, i.e., we compute F(β) for various values of where the larger the value of β the more recall is weighted, the smaller the value of β the more precision is weighted. CONCLUSIONS: ResidueFinder is a simple, effective, and efficient program for finding individual residue mentions in primary literature starting with text files, implemented in Python, and available in SourceForge.net. The most computationally efficient versions of ResidueFinder could enable creation and maintenance of a database of residue mentions encompassing all articles in PubMed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13326-021-00243-3.