Cargando…
An ensemble-based feature selection framework to select risk factors of childhood obesity for policy decision making
BACKGROUND: The increasing prevalence of childhood obesity makes it essential to study the risk factors with a sample representative of the population covering more health topics for better preventive policies and interventions. It is aimed to develop an ensemble feature selection framework for larg...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293582/ https://www.ncbi.nlm.nih.gov/pubmed/34289843 http://dx.doi.org/10.1186/s12911-021-01580-0 |
Sumario: | BACKGROUND: The increasing prevalence of childhood obesity makes it essential to study the risk factors with a sample representative of the population covering more health topics for better preventive policies and interventions. It is aimed to develop an ensemble feature selection framework for large-scale data to identify risk factors of childhood obesity with good interpretability and clinical relevance. METHODS: We analyzed the data collected from 426,813 children under 18 during 2000–2019. A BMI above the 90th percentile for the children of the same age and gender was defined as overweight. An ensemble feature selection framework, Bagging-based Feature Selection framework integrating MapReduce (BFSMR), was proposed to identify risk factors. The framework comprises 5 models (filter with mutual information/SVM-RFE/Lasso/Ridge/Random Forest) from filter, wrapper, and embedded feature selection methods. Each feature selection model identified 10 variables based on variable importance. Considering accuracy, F-score, and model characteristics, the models were classified into 3 levels with different weights: Lasso/Ridge, Filter/SVM-RFE, and Random Forest. The voting strategy was applied to aggregate the selected features, with both feature weights and model weights taken into consideration. We compared our voting strategy with another two for selecting top-ranked features in terms of 6 dimensions of interpretability. RESULTS: Our method performed the best to select the features with good interpretability and clinical relevance. The top 10 features selected by BFSMR are age, sex, birth year, breastfeeding type, smoking habit and diet-related knowledge of both children and mothers, exercise, and Mother’s systolic blood pressure. CONCLUSION: Our framework provides a solution for identifying a diverse and interpretable feature set without model bias from large-scale data, which can help identify risk factors of childhood obesity and potentially some other diseases for future interventions or policies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12911-021-01580-0. |
---|