Cargando…

Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation

Aim: SARS-CoV-2, an emerging betacoronavirus, is the causative agent of COVID-19. Currently, there are few specific and selective antiviral drugs for the treatment and vaccines to prevent contagion. However, their long-term effects can be revealed after several years, and new drugs for COVID-19 shou...

Descripción completa

Detalles Bibliográficos
Autores principales: Cava, Claudia, Bertoli, Gloria, Castiglioni, Isabella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Future Medicine Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293696/
https://www.ncbi.nlm.nih.gov/pubmed/34306168
http://dx.doi.org/10.2217/fvl-2020-0392
Descripción
Sumario:Aim: SARS-CoV-2, an emerging betacoronavirus, is the causative agent of COVID-19. Currently, there are few specific and selective antiviral drugs for the treatment and vaccines to prevent contagion. However, their long-term effects can be revealed after several years, and new drugs for COVID-19 should continue to be investigated. Materials & methods: In the first step of our study we identified, through a gene expression analysis, several drugs that could act on the biological pathways altered in COVID-19. In the second step, we performed a docking simulation to test the properties of the identified drugs to target SARS-CoV-2. Results: The drugs that showed a higher binding affinity are bardoxolone (-8.78 kcal/mol), irinotecan (-8.40 kcal/mol) and pyrotinib (-8.40 kcal/mol). Conclusion: We suggested some drugs that could be efficient in treating COVID-19.