Cargando…
Propensity Score Analysis with Partially Observed Baseline Covariates: A Practical Comparison of Methods for Handling Missing Data
(1) Background: Propensity score methods gained popularity in non-interventional clinical studies. As it may often occur in observational datasets, some values in baseline covariates are missing for some patients. The present study aims to compare the performances of popular statistical methods to d...
Autores principales: | Bottigliengo, Daniele, Lorenzoni, Giulia, Ocagli, Honoria, Martinato, Matteo, Berchialla, Paola, Gregori, Dario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293809/ https://www.ncbi.nlm.nih.gov/pubmed/34206234 http://dx.doi.org/10.3390/ijerph18136694 |
Ejemplares similares
-
Using Social Networks to Estimate the Number of COVID-19 Cases: The Incident (Hidden COVID-19 Cases Network Estimation) Study Protocol
por: Ocagli, Honoria, et al.
Publicado: (2021) -
Epidemiology and Trends over Time of Foreign Body Injuries in the Pediatric Emergency Department
por: Ocagli, Honoria, et al.
Publicado: (2021) -
The Role of Genetic Factors in Characterizing Extra-Intestinal Manifestations in Crohn’s Disease Patients: Are Bayesian Machine Learning Methods Improving Outcome Predictions?
por: Bottigliengo, Daniele, et al.
Publicado: (2019) -
A Machine Learning Approach for Investigating Delirium as a Multifactorial Syndrome
por: Ocagli, Honoria, et al.
Publicado: (2021) -
The Surplus Transplant Lung Allocation System in Italy: An Evaluation of the Allocation Process via Stochastic Modeling
por: Lanera, Corrado, et al.
Publicado: (2021)