Cargando…
Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, w...
Autores principales: | Zuo, Chunman, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293818/ https://www.ncbi.nlm.nih.gov/pubmed/33200787 http://dx.doi.org/10.1093/bib/bbaa287 |
Ejemplares similares
-
Joint reconstruction of cis-regulatory interaction networks across multiple tissues using single-cell chromatin accessibility data
por: Dong, Kangning, et al.
Publicado: (2020) -
Learning single-cell chromatin accessibility profiles using meta-analytic marker genes
por: Kawaguchi, Risa Karakida, et al.
Publicado: (2022) -
InferLoop: leveraging single-cell chromatin accessibility for the signal of chromatin loop
por: Zhang, Feng, et al.
Publicado: (2023) -
Spatial density of open chromatin: an effective metric for the functional characterization of topologically associated domains
por: Jiang, Shuai, et al.
Publicado: (2020) -
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
por: Withnell, Eloise, et al.
Publicado: (2021)