Cargando…

Formally exact simulations of mesoscale exciton dynamics in molecular materials

Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular materials but only delocalize over short length scales due to coupling between electronic and vibrational degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hie...

Descripción completa

Detalles Bibliográficos
Autores principales: Varvelo, Leonel, Lynd, Jacob K., Bennett, Doran I. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293828/
https://www.ncbi.nlm.nih.gov/pubmed/34349941
http://dx.doi.org/10.1039/d1sc01448j
_version_ 1783725125338660864
author Varvelo, Leonel
Lynd, Jacob K.
Bennett, Doran I. G.
author_facet Varvelo, Leonel
Lynd, Jacob K.
Bennett, Doran I. G.
author_sort Varvelo, Leonel
collection PubMed
description Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular materials but only delocalize over short length scales due to coupling between electronic and vibrational degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hierarchy of pure states equations (HOPS). We demonstrate that our adaptive HOPS (adHOPS) methodology provides a formally exact and size-invariant (i.e., [Image: see text]) scaling algorithm for simulating mesoscale quantum dynamics. Finally, we provide proof-of-principle calculations for exciton diffusion on linear chains containing up to 1000 molecules.
format Online
Article
Text
id pubmed-8293828
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-82938282021-08-03 Formally exact simulations of mesoscale exciton dynamics in molecular materials Varvelo, Leonel Lynd, Jacob K. Bennett, Doran I. G. Chem Sci Chemistry Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular materials but only delocalize over short length scales due to coupling between electronic and vibrational degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hierarchy of pure states equations (HOPS). We demonstrate that our adaptive HOPS (adHOPS) methodology provides a formally exact and size-invariant (i.e., [Image: see text]) scaling algorithm for simulating mesoscale quantum dynamics. Finally, we provide proof-of-principle calculations for exciton diffusion on linear chains containing up to 1000 molecules. The Royal Society of Chemistry 2021-05-31 /pmc/articles/PMC8293828/ /pubmed/34349941 http://dx.doi.org/10.1039/d1sc01448j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Varvelo, Leonel
Lynd, Jacob K.
Bennett, Doran I. G.
Formally exact simulations of mesoscale exciton dynamics in molecular materials
title Formally exact simulations of mesoscale exciton dynamics in molecular materials
title_full Formally exact simulations of mesoscale exciton dynamics in molecular materials
title_fullStr Formally exact simulations of mesoscale exciton dynamics in molecular materials
title_full_unstemmed Formally exact simulations of mesoscale exciton dynamics in molecular materials
title_short Formally exact simulations of mesoscale exciton dynamics in molecular materials
title_sort formally exact simulations of mesoscale exciton dynamics in molecular materials
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293828/
https://www.ncbi.nlm.nih.gov/pubmed/34349941
http://dx.doi.org/10.1039/d1sc01448j
work_keys_str_mv AT varveloleonel formallyexactsimulationsofmesoscaleexcitondynamicsinmolecularmaterials
AT lyndjacobk formallyexactsimulationsofmesoscaleexcitondynamicsinmolecularmaterials
AT bennettdoranig formallyexactsimulationsofmesoscaleexcitondynamicsinmolecularmaterials