Cargando…
Errors in Statistical Inference Under Model Misspecification: Evidence, Hypothesis Testing, and AIC
The methods for making statistical inferences in scientific analysis have diversified even within the frequentist branch of statistics, but comparison has been elusive. We approximate analytically and numerically the performance of Neyman-Pearson hypothesis testing, Fisher significance testing, info...
Autores principales: | Dennis, Brian, Ponciano, José Miguel, Taper, Mark L., Lele, Subhash R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293863/ https://www.ncbi.nlm.nih.gov/pubmed/34295904 http://dx.doi.org/10.3389/fevo.2019.00372 |
Ejemplares similares
-
Entropy, Statistical Evidence, and Scientific Inference: Evidence Functions in Theory and Applications
por: Taper, Mark L., et al.
Publicado: (2022) -
Model Projections in Model Space: A Geometric Interpretation of the AIC Allows Estimating the Distance Between Truth and Approximating Models
por: Ponciano, José Miguel, et al.
Publicado: (2019) -
Bootstrap inference for multiple imputation under uncongeniality and misspecification
por: Bartlett, Jonathan W, et al.
Publicado: (2020) -
Model Averaging with AIC Weights for Hypothesis Testing of Hormesis at Low Doses
por: Kim, Steven B., et al.
Publicado: (2017) -
Model misspecification misleads inference of the spatial dynamics of disease outbreaks
por: Gao, Jiansi, et al.
Publicado: (2023)