Cargando…
Dynamic sampling of images from various categories for classification based incremental deep learning in fog computing
Incremental learning evolves deep neural network knowledge over time by learning continuously from new data instead of training a model just once with all data present before the training starts. However, in incremental learning, new samples are always streaming in whereby the model to be trained ne...
Autores principales: | Dube, Swaraj, Wong, Yee Wan, Nugroho, Hermawan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293927/ https://www.ncbi.nlm.nih.gov/pubmed/34322595 http://dx.doi.org/10.7717/peerj-cs.633 |
Ejemplares similares
-
Fog computing: a platform for big-data marketing analytics
por: Hornik, Jacob, et al.
Publicado: (2023) -
Is Class-Incremental Enough for Continual Learning?
por: Cossu, Andrea, et al.
Publicado: (2022) -
Federated learning enables intelligent reflecting surface in fog-cloud enabled cellular network
por: Lakhan, Abdullah, et al.
Publicado: (2021) -
Incremental learning of LSTM framework for sensor fusion in attitude estimation
por: Narkhede, Parag, et al.
Publicado: (2021) -
Deep Ensemble Learning for Retinal Image Classification
por: Ho, Edward, et al.
Publicado: (2022)