Cargando…
Machine learning analysis of TCGA cancer data
In recent years, machine learning (ML) researchers have changed their focus towards biological problems that are difficult to analyse with standard approaches. Large initiatives such as The Cancer Genome Atlas (TCGA) have allowed the use of omic data for the training of these algorithms. In order to...
Autores principales: | Liñares-Blanco, Jose, Pazos, Alejandro, Fernandez-Lozano, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293929/ https://www.ncbi.nlm.nih.gov/pubmed/34322589 http://dx.doi.org/10.7717/peerj-cs.584 |
Ejemplares similares
-
Identification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniques
por: Arceo-Vilas, Alba, et al.
Publicado: (2020) -
Molecular docking and machine learning analysis of Abemaciclib in colon cancer
por: Liñares-Blanco, Jose, et al.
Publicado: (2020) -
Feature screening for survival trait with application to TCGA high-dimensional genomic data
por: Wang, Jie-Huei, et al.
Publicado: (2022) -
Characterization of bidirectional gene pairs in The Cancer Genome Atlas (TCGA) dataset
por: Tu, Juchuanli, et al.
Publicado: (2019) -
A methodology for the design of experiments in computational intelligence with multiple regression models
por: Fernandez-Lozano, Carlos, et al.
Publicado: (2016)