Cargando…
A comprehensive review of deep learning-based single image super-resolution
Image super-resolution (SR) is one of the vital image processing methods that improve the resolution of an image in the field of computer vision. In the last two decades, significant progress has been made in the field of super-resolution, especially by utilizing deep learning methods. This survey i...
Autores principales: | Bashir, Syed Muhammad Arsalan, Wang, Yi, Khan, Mahrukh, Niu, Yilong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293932/ https://www.ncbi.nlm.nih.gov/pubmed/34322592 http://dx.doi.org/10.7717/peerj-cs.621 |
Ejemplares similares
-
SRflow: Deep learning based super-resolution of 4D-flow MRI data
por: Shit, Suprosanna, et al.
Publicado: (2022) -
Deep Learning of Histopathology Images at the Single Cell Level
por: Lee, Kyubum, et al.
Publicado: (2021) -
From ECG signals to images: a transformation based approach for deep learning
por: Naz, Mahwish, et al.
Publicado: (2021) -
Deep Ensemble Learning for Retinal Image Classification
por: Ho, Edward, et al.
Publicado: (2022) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023)