Cargando…

Bioinformatics prediction of differential miRNAs in non-small cell lung cancer

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers. The drug resistance of NSCLC has clinically increased. This study aimed to screen miRNAs associated with NSCLC using bioinformatics analysis. We hope that the screened miRNA can provide a research direction for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Kui, Liu, Shenggang, Xiao, Yijia, Wang, Yang, Zhu, Zhiruo, Wang, Yaohui, Tong, De, Jiang, Jiehan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294502/
https://www.ncbi.nlm.nih.gov/pubmed/34288959
http://dx.doi.org/10.1371/journal.pone.0254854
Descripción
Sumario:BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers. The drug resistance of NSCLC has clinically increased. This study aimed to screen miRNAs associated with NSCLC using bioinformatics analysis. We hope that the screened miRNA can provide a research direction for the subsequent treatment of NSCLC. METHODS: We screened out the common miRNAs after compared the NSCLC-related genes in the TCGA database and GEO database. Selected miRNA was performed ROC analysis, survival analysis, and enrichment analysis (GO term and KEGG pathway). RESULTS: A total of 21 miRNAs were screened in the two databases. And they were all highly expressed in normal and low in cancerous tissues. Hsa-mir-30a was selected by ROC analysis and survival analysis. Enrichment analysis showed that the function of hsa-mir-30a is mainly related to cell cycle regulation and drug metabolism. CONCLUSION: Our study found that hsa-mir-30a was differentially expressed in NSCLC, and it mainly affected NSCLC by regulating the cell cycle and drug metabolism.