Cargando…
Automatic cell counting from stimulated Raman imaging using deep learning
In this paper, we propose an automatic cell counting framework for stimulated Raman scattering (SRS) images, which can assist tumor tissue characteristic analysis, cancer diagnosis, and surgery planning processes. SRS microscopy has promoted tumor diagnosis and surgery by mapping lipids and proteins...
Autores principales: | Zhang, Qianqian, Yun, Kyung Keun, Wang, Hao, Yoon, Sang Won, Lu, Fake, Won, Daehan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294532/ https://www.ncbi.nlm.nih.gov/pubmed/34288972 http://dx.doi.org/10.1371/journal.pone.0254586 |
Ejemplares similares
-
Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning
por: Norouzzadeh, Mohammad Sadegh, et al.
Publicado: (2018) -
Automatic Detection and Counting of Wheat Spikelet Using Semi-Automatic Labeling and Deep Learning
por: Qiu, Ruicheng, et al.
Publicado: (2022) -
Assessing fatty acid-induced lipotoxicity and its therapeutic potential in glioblastoma using stimulated Raman microscopy
por: Yuan, Yuhao, et al.
Publicado: (2021) -
Automatic Pest Counting from Pheromone Trap Images Using Deep Learning Object Detectors for Matsucoccus thunbergianae Monitoring
por: Hong, Suk-Ju, et al.
Publicado: (2021) -
Deep learning-based school attendance prediction for autistic students
por: Jarbou, Mohammed, et al.
Publicado: (2022)