Cargando…
RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions
The segmentation of COVID-19 lesions from computed tomography (CT) scans is crucial to develop an efficient automated diagnosis system. Deep learning (DL) has shown success in different segmentation tasks. However, an efficient DL approach requires a large amount of accurately annotated data, which...
Autores principales: | Ding, Weiping, Abdel-Basset, Mohamed, Hawash, Hossam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294559/ https://www.ncbi.nlm.nih.gov/pubmed/34305162 http://dx.doi.org/10.1016/j.ins.2021.07.059 |
Ejemplares similares
-
FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection
por: Abdel-Basset, Mohamed, et al.
Publicado: (2021) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
MIC-Net: A deep network for cross-site segmentation of COVID-19 infection in the fog-assisted IoMT
por: Ding, Weiping, et al.
Publicado: (2023) -
Self-Ensembling Co-Training Framework for Semi-Supervised COVID-19 CT Segmentation
Publicado: (2021) -
Semi-Supervised Segmentation Framework for Gastrointestinal Lesion Diagnosis in Endoscopic Images
por: Lonseko, Zenebe Markos, et al.
Publicado: (2023)