Cargando…

A power approximation for the Kenward and Roger Wald test in the linear mixed model

We derive a noncentral [Image: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled W...

Descripción completa

Detalles Bibliográficos
Autores principales: Kreidler, Sarah M., Ringham, Brandy M., Muller, Keith E., Glueck, Deborah H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294572/
https://www.ncbi.nlm.nih.gov/pubmed/34288958
http://dx.doi.org/10.1371/journal.pone.0254811
_version_ 1783725264009691136
author Kreidler, Sarah M.
Ringham, Brandy M.
Muller, Keith E.
Glueck, Deborah H.
author_facet Kreidler, Sarah M.
Ringham, Brandy M.
Muller, Keith E.
Glueck, Deborah H.
author_sort Kreidler, Sarah M.
collection PubMed
description We derive a noncentral [Image: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled Wald statistic. Via Monte Carlo simulation, we demonstrate that the new power approximation is accurate for cluster randomized trials and longitudinal study designs. The method retains accuracy for small sample sizes, even in the presence of missing data. We illustrate the method with a power calculation for an unbalanced group-randomized trial in oral cancer prevention.
format Online
Article
Text
id pubmed-8294572
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-82945722021-07-31 A power approximation for the Kenward and Roger Wald test in the linear mixed model Kreidler, Sarah M. Ringham, Brandy M. Muller, Keith E. Glueck, Deborah H. PLoS One Research Article We derive a noncentral [Image: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled Wald statistic. Via Monte Carlo simulation, we demonstrate that the new power approximation is accurate for cluster randomized trials and longitudinal study designs. The method retains accuracy for small sample sizes, even in the presence of missing data. We illustrate the method with a power calculation for an unbalanced group-randomized trial in oral cancer prevention. Public Library of Science 2021-07-21 /pmc/articles/PMC8294572/ /pubmed/34288958 http://dx.doi.org/10.1371/journal.pone.0254811 Text en © 2021 Kreidler et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kreidler, Sarah M.
Ringham, Brandy M.
Muller, Keith E.
Glueck, Deborah H.
A power approximation for the Kenward and Roger Wald test in the linear mixed model
title A power approximation for the Kenward and Roger Wald test in the linear mixed model
title_full A power approximation for the Kenward and Roger Wald test in the linear mixed model
title_fullStr A power approximation for the Kenward and Roger Wald test in the linear mixed model
title_full_unstemmed A power approximation for the Kenward and Roger Wald test in the linear mixed model
title_short A power approximation for the Kenward and Roger Wald test in the linear mixed model
title_sort power approximation for the kenward and roger wald test in the linear mixed model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294572/
https://www.ncbi.nlm.nih.gov/pubmed/34288958
http://dx.doi.org/10.1371/journal.pone.0254811
work_keys_str_mv AT kreidlersarahm apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT ringhambrandym apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT mullerkeithe apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT glueckdeborahh apowerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT kreidlersarahm powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT ringhambrandym powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT mullerkeithe powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel
AT glueckdeborahh powerapproximationforthekenwardandrogerwaldtestinthelinearmixedmodel