Cargando…
A power approximation for the Kenward and Roger Wald test in the linear mixed model
We derive a noncentral [Image: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled W...
Autores principales: | Kreidler, Sarah M., Ringham, Brandy M., Muller, Keith E., Glueck, Deborah H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294572/ https://www.ncbi.nlm.nih.gov/pubmed/34288958 http://dx.doi.org/10.1371/journal.pone.0254811 |
Ejemplares similares
-
Reducing decision errors in the paired comparison of the diagnostic accuracy of screening tests with Gaussian outcomes
por: Ringham, Brandy M, et al.
Publicado: (2014) -
Comment on “Analysis of Longitudinal Trials With Protocol Deviations: A Framework for Relevant, Accessible Assumptions, and Inference via Multiple Imputation,” by Carpenter, Roger, and Kenward
por: Seaman, Shaun R., et al.
Publicado: (2014) -
GLIMMPSE Lite: Calculating Power and Sample Size on Smartphone Devices
por: Munjal, Aarti, et al.
Publicado: (2014) -
Rao and Wald Tests for Nonhomogeneous Scenarios
por: Hao, Chengpeng, et al.
Publicado: (2012) -
An internal pilot design for prospective cancer screening trials with unknown disease prevalence
por: Brinton, John T., et al.
Publicado: (2015)