Cargando…

Miro1-dependent mitochondrial dynamics in parvalbumin interneurons

The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kontou, Georgina, Antonoudiou, Pantelis, Podpolny, Marina, Szulc, Blanka R, Arancibia-Carcamo, I Lorena, Higgs, Nathalie F, Lopez-Domenech, Guillermo, Salinas, Patricia C, Mann, Edward O, Kittler, Josef T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294849/
https://www.ncbi.nlm.nih.gov/pubmed/34190042
http://dx.doi.org/10.7554/eLife.65215
Descripción
Sumario:The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²(+)-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca(2+)-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30–80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.