Cargando…
DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
MOTIVATION: Automated function prediction (AFP) of proteins is a large-scale multi-label classification problem. Two limitations of most network-based methods for AFP are (i) a single model must be trained for each species and (ii) protein sequence information is totally ignored. These limitations c...
Autores principales: | You, Ronghui, Yao, Shuwei, Mamitsuka, Hiroshi, Zhu, Shanfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294856/ https://www.ncbi.nlm.nih.gov/pubmed/34252926 http://dx.doi.org/10.1093/bioinformatics/btab270 |
Ejemplares similares
-
Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
por: Yan, Zichao, et al.
Publicado: (2020) -
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
MutCombinator: identification of mutated peptides allowing combinatorial mutations using nucleotide-based graph search
por: Choi, Seunghyuk, et al.
Publicado: (2020) -
A gated graph transformer for protein complex structure quality assessment and its performance in CASP15
por: Chen, Xiao, et al.
Publicado: (2023) -
Cancer mutational signatures representation by large-scale context embedding
por: Zhang, Yang, et al.
Publicado: (2020)