Cargando…
Three-Dimensional Convolutional Autoencoder Extracts Features of Structural Brain Images With a “Diagnostic Label-Free” Approach: Application to Schizophrenia Datasets
There has been increasing interest in performing psychiatric brain imaging studies using deep learning. However, most studies in this field disregard three-dimensional (3D) spatial information and targeted disease discrimination, without considering the genetic and clinical heterogeneity of psychiat...
Autores principales: | Yamaguchi, Hiroyuki, Hashimoto, Yuki, Sugihara, Genichi, Miyata, Jun, Murai, Toshiya, Takahashi, Hidehiko, Honda, Manabu, Hishimoto, Akitoyo, Yamashita, Yuichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294943/ https://www.ncbi.nlm.nih.gov/pubmed/34305514 http://dx.doi.org/10.3389/fnins.2021.652987 |
Ejemplares similares
-
Insular Gray Matter Volume and Objective Quality of Life in Schizophrenia
por: Uwatoko, Teruhisa, et al.
Publicado: (2015) -
Additive Effect of Cigarette Smoking on Gray Matter Abnormalities in Schizophrenia
por: Yokoyama, Naoto, et al.
Publicado: (2018) -
Deep Feature Extraction for Resting-State Functional MRI by Self-Supervised Learning and Application to Schizophrenia Diagnosis
por: Hashimoto, Yuki, et al.
Publicado: (2021) -
Epigenetic clock analysis and increased plasminogen activator inhibitor-1 in high-functioning autism spectrum disorder
por: Okazaki, Satoshi, et al.
Publicado: (2022) -
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
por: Pintelas, Emmanuel, et al.
Publicado: (2021)