Cargando…
Computational predictions for protein sequences of COVID-19 virus via machine learning algorithms
The rapid spread of coronavirus disease (COVID-19) has become a worldwide pandemic and affected more than 15 million patients reported in 27 countries. Therefore, the computational biology carrying this virus that correlates with the human population urgently needs to be understood. In this paper, t...
Autores principales: | Afify, Heba M., Zanaty, Muhammad S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295007/ https://www.ncbi.nlm.nih.gov/pubmed/34291385 http://dx.doi.org/10.1007/s11517-021-02412-z |
Ejemplares similares
-
Protein Sequence Classification with Improved Extreme Learning Machine Algorithms
por: Cao, Jiuwen, et al.
Publicado: (2014) -
Comparing machine learning algorithms for predicting COVID-19 mortality
por: Moulaei, Khadijeh, et al.
Publicado: (2022) -
Using Machine Learning Algorithms to Predict People’s Intention to Use Mobile Learning Platforms During the COVID-19 Pandemic: Machine Learning Approach
por: Akour, Iman, et al.
Publicado: (2021) -
A comparison of machine learning algorithms in predicting COVID-19 prognostics
por: Ustebay, Serpil, et al.
Publicado: (2022) -
Classification and prediction of protein–protein interaction interface using machine learning algorithm
por: Das, Subhrangshu, et al.
Publicado: (2021)