Cargando…
A Unified Hierarchical XGBoost model for classifying priorities for COVID-19 vaccination campaign
The current ML approaches do not fully focus to answer a still unresolved and topical challenge, namely the prediction of priorities of COVID-19 vaccine administration. Thus, our task includes some additional methodological challenges mainly related to avoiding unwanted bias while handling categoric...
Autores principales: | Romeo, Luca, Frontoni, Emanuele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295058/ https://www.ncbi.nlm.nih.gov/pubmed/34312570 http://dx.doi.org/10.1016/j.patcog.2021.108197 |
Ejemplares similares
-
Machine learning using the extreme gradient boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients
por: Montomoli, Jonathan, et al.
Publicado: (2021) -
Machine learning–XGBoost analysis of language networks to classify patients with epilepsy
por: Torlay, L., et al.
Publicado: (2017) -
XGSleeve: detecting sleeve incidents in well completion by using XGBoost classifier
por: Somi, Sahand, et al.
Publicado: (2023) -
Five-Feature Model for Developing the Classifier for Synergistic vs. Antagonistic Drug Combinations Built by XGBoost
por: Ji, Xiangjun, et al.
Publicado: (2019) -
Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP
por: Raihan, Md. Johir, et al.
Publicado: (2023)