Cargando…
Generation of annotated multimodal ground truth datasets for abdominal medical image registration
PURPOSE: Sparsity of annotated data is a major limitation in medical image processing tasks such as registration. Registered multimodal image data are essential for the diagnosis of medical conditions and the success of interventional medical procedures. To overcome the shortage of data, we present...
Autores principales: | Bauer, Dominik F., Russ, Tom, Waldkirch, Barbara I., Tönnes, Christian, Segars, William P., Schad, Lothar R., Zöllner, Frank G., Golla, Alena-Kathrin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295129/ https://www.ncbi.nlm.nih.gov/pubmed/33934313 http://dx.doi.org/10.1007/s11548-021-02372-7 |
Ejemplares similares
-
Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning
por: Golla, Alena-K., et al.
Publicado: (2021) -
Feature-based CBCT self-calibration for arbitrary trajectories
por: Tönnes, Christian, et al.
Publicado: (2022) -
Deep Learning-Based Total Kidney Volume Segmentation in Autosomal Dominant Polycystic Kidney Disease Using Attention, Cosine Loss, and Sharpness Aware Minimization
por: Raj, Anish, et al.
Publicado: (2022) -
VirtMRI: A Tool for Teaching MRI
por: Tönnes, Christian, et al.
Publicado: (2023) -
Evaluation of surface-based hippocampal registration using ground-truth subfield definitions
por: DeKraker, Jordan, et al.
Publicado: (2023)