Cargando…
Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis
PURPOSE: To systematically review and evaluate the methodological quality of studies using radiomics for diagnostic and predictive purposes in patients with intracranial meningioma. To perform a meta-analysis of machine learning studies for the prediction of intracranial meningioma grading from pre-...
Autores principales: | Ugga, Lorenzo, Perillo, Teresa, Cuocolo, Renato, Stanzione, Arnaldo, Romeo, Valeria, Green, Roberta, Cantoni, Valeria, Brunetti, Arturo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295153/ https://www.ncbi.nlm.nih.gov/pubmed/33649882 http://dx.doi.org/10.1007/s00234-021-02668-0 |
Ejemplares similares
-
Oncologic Imaging and Radiomics: A Walkthrough Review of Methodological Challenges
por: Stanzione, Arnaldo, et al.
Publicado: (2022) -
Differential diagnosis of benign and malignant vertebral compression fractures using conventional and advanced MRI techniques
por: Romeo, Valeria, et al.
Publicado: (2019) -
Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI
por: Cuocolo, Renato, et al.
Publicado: (2020) -
MRI Radiomics and Machine Learning for the Prediction of Oncotype Dx Recurrence Score in Invasive Breast Cancer
por: Romeo, Valeria, et al.
Publicado: (2023) -
Meningioma Radiomics: At the Nexus of Imaging, Pathology and Biomolecular Characterization
por: Ugga, Lorenzo, et al.
Publicado: (2022)