Cargando…
Machine learning-based preoperative datamining can predict the therapeutic outcome of sleep surgery in OSA subjects
Increasing recognition of anatomical obstruction has resulted in a large variety of sleep surgeries to improve anatomic collapse of obstructive sleep apnea (OSA) and the prediction of whether sleep surgery will have successful outcome is very important. The aim of this study is to assess a machine l...
Autores principales: | Kim, Jin Youp, Kong, Hyoun-Joong, Kim, Su Hwan, Lee, Sangjun, Kang, Seung Heon, Han, Seung Cheol, Kim, Do Won, Ji, Jeong-Yeon, Kim, Hyun Jik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295249/ https://www.ncbi.nlm.nih.gov/pubmed/34290326 http://dx.doi.org/10.1038/s41598-021-94454-4 |
Ejemplares similares
-
Cross-project HTS-datamining
por: Guba, Wolfgang, et al.
Publicado: (2011) -
Sleep parameter characteristics of patients with OSA who have retropalatal circumferential narrowing and the clinical significance of lateral pharyngeal wall collapse during sleep
por: A Han, Sun, et al.
Publicado: (2023) -
Salivary and pellicle proteome: A datamining analysis
por: Schweigel, Hardy, et al.
Publicado: (2016) -
Influencing factors on CPAP adherence and anatomic characteristics of upper airway in OSA subjects
por: Park, Pona, et al.
Publicado: (2017) -
The clinical influence of nasal surgery on PAP compliance and optimal application among OSA subjects uncomfortable with PAP device wear
por: Cha, Hyunkyung, et al.
Publicado: (2023)