Cargando…
flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions
Identification of intrinsic disorder in proteins relies in large part on computational predictors, which demands that their accuracy should be high. Since intrinsic disorder carries out a broad range of cellular functions, it is desirable to couple the disorder and disorder function predictions. We...
Autores principales: | Hu, Gang, Katuwawala, Akila, Wang, Kui, Wu, Zhonghua, Ghadermarzi, Sina, Gao, Jianzhao, Kurgan, Lukasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295265/ https://www.ncbi.nlm.nih.gov/pubmed/34290238 http://dx.doi.org/10.1038/s41467-021-24773-7 |
Ejemplares similares
-
QUARTERplus: Accurate disorder predictions integrated with interpretable residue-level quality assessment scores
por: Katuwawala, Akila, et al.
Publicado: (2021) -
Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins
por: Katuwawala, Akila, et al.
Publicado: (2020) -
Computational Prediction of MoRFs, Short Disorder-to-order Transitioning Protein Binding Regions
por: Katuwawala, Akila, et al.
Publicado: (2019) -
Deep learning in prediction of intrinsic disorder in proteins
por: Zhao, Bi, et al.
Publicado: (2022) -
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions
por: Hu, Gang, et al.
Publicado: (2017)