Cargando…

Electromagnetic wave transparency of X mode in strongly magnetized plasma

An electromagnetic (EM) pulse falling on a plasma medium from vacuum can either reflect, get absorbed or propagate inside the plasma depending on whether it is overdense or underdense. In a magnetized plasma, however, there are usually several pass and stop bands for the EM wave depending on the ori...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandal, Devshree, Vashistha, Ayushi, Das, Amita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295326/
https://www.ncbi.nlm.nih.gov/pubmed/34290307
http://dx.doi.org/10.1038/s41598-021-94029-3
Descripción
Sumario:An electromagnetic (EM) pulse falling on a plasma medium from vacuum can either reflect, get absorbed or propagate inside the plasma depending on whether it is overdense or underdense. In a magnetized plasma, however, there are usually several pass and stop bands for the EM wave depending on the orientation of the magnetic field with respect to the propagation direction. The EM wave while propagating in a plasma can also excite electrostatic disturbances in the plasma. In this work Particle-In-Cell simulations have been carried out to illustrate the complete transparency of the EM wave propagation inside a strongly magnetized plasma. The external magnetic field is chosen to be perpendicular to both the wave propagation direction and the electric field of the EM wave, which is the X mode configuration. Despite the presence of charged electron and ion species the plasma medium behaves like a vacuum. The observation is understood with the help of particle drifts. It is shown that though the two particle species move under the influence of EM fields their motion does not lead to any charge or current source to alter the dispersion relation of the EM wave propagating in the medium. Furthermore, it is also shown that the stop band for EM wave in this regime shrinks to a zero width as both the resonance and cut-off points approach each other. Thus, transparency to the EM radiation in such a strongly magnetized case appears to be a norm.