Cargando…
A new immunochemical strategy for triple-negative breast cancer therapy
Triple-negative breast cancer (TNBC) is a highly diverse group of malignant neoplasms which tend to have poor outcomes, and the development of new targets and strategies to treat these cancers is sorely needed. Antibody–drug conjugate (ADC) therapy has been shown to be a promising targeted therapy f...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295383/ https://www.ncbi.nlm.nih.gov/pubmed/34290315 http://dx.doi.org/10.1038/s41598-021-94230-4 |
_version_ | 1783725425388683264 |
---|---|
author | Lin, Chih-Wei Zheng, Tianqing Grande, Geramie Nanna, Alex R. Rader, Christoph Lerner, Richard A. |
author_facet | Lin, Chih-Wei Zheng, Tianqing Grande, Geramie Nanna, Alex R. Rader, Christoph Lerner, Richard A. |
author_sort | Lin, Chih-Wei |
collection | PubMed |
description | Triple-negative breast cancer (TNBC) is a highly diverse group of malignant neoplasms which tend to have poor outcomes, and the development of new targets and strategies to treat these cancers is sorely needed. Antibody–drug conjugate (ADC) therapy has been shown to be a promising targeted therapy for treating many cancers, but has only rarely been tried in patients with TNBC. A major reason the efficacy of ADC therapy in the setting of TNBC has not been more fully investigated is the lack of appropriate target molecules. In this work we were able to identify an effective TNBC target for use in immunotherapy. We were guided by our previous observation that in some breast cancer patients the protein tropomyosin receptor kinase B cell surface protein (TrkB) had become immunogenic, suggesting that it was somehow sufficiently chemically different enough (presumably by mutation) to escaped immune tolerance. We postulated that this difference might well offer a means for selective targeting by antibodies. We engineered site-specific ADCs using a dual variable domain (DVD) format which combines anti-TrkB antibody with the h38C2 catalytic antibody. This format enables rapid, one-step, and homogeneous conjugation of β-lactam-derivatized drugs. Following conjugation to β-lactam-derivatized monomethyl auristatin F, the TrkB-targeting DVD-ADCs showed potency against multiple breast cancer cell lines, including TNBC cell lines. In addition, our isolation of antibody that specifically recognized the breast cancer-associated mutant form of TrkB, but not the wild type TrkB, indicates the possibility of further refining the selectivity of anti-TrkB DVD-ADCs, which should enhance their therapeutic index. These results confirmed our supposition that TrkB is a potential target for immunotherapy for TNBC, as well as for other cancers with mutated cell surface proteins. |
format | Online Article Text |
id | pubmed-8295383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-82953832021-07-23 A new immunochemical strategy for triple-negative breast cancer therapy Lin, Chih-Wei Zheng, Tianqing Grande, Geramie Nanna, Alex R. Rader, Christoph Lerner, Richard A. Sci Rep Article Triple-negative breast cancer (TNBC) is a highly diverse group of malignant neoplasms which tend to have poor outcomes, and the development of new targets and strategies to treat these cancers is sorely needed. Antibody–drug conjugate (ADC) therapy has been shown to be a promising targeted therapy for treating many cancers, but has only rarely been tried in patients with TNBC. A major reason the efficacy of ADC therapy in the setting of TNBC has not been more fully investigated is the lack of appropriate target molecules. In this work we were able to identify an effective TNBC target for use in immunotherapy. We were guided by our previous observation that in some breast cancer patients the protein tropomyosin receptor kinase B cell surface protein (TrkB) had become immunogenic, suggesting that it was somehow sufficiently chemically different enough (presumably by mutation) to escaped immune tolerance. We postulated that this difference might well offer a means for selective targeting by antibodies. We engineered site-specific ADCs using a dual variable domain (DVD) format which combines anti-TrkB antibody with the h38C2 catalytic antibody. This format enables rapid, one-step, and homogeneous conjugation of β-lactam-derivatized drugs. Following conjugation to β-lactam-derivatized monomethyl auristatin F, the TrkB-targeting DVD-ADCs showed potency against multiple breast cancer cell lines, including TNBC cell lines. In addition, our isolation of antibody that specifically recognized the breast cancer-associated mutant form of TrkB, but not the wild type TrkB, indicates the possibility of further refining the selectivity of anti-TrkB DVD-ADCs, which should enhance their therapeutic index. These results confirmed our supposition that TrkB is a potential target for immunotherapy for TNBC, as well as for other cancers with mutated cell surface proteins. Nature Publishing Group UK 2021-07-21 /pmc/articles/PMC8295383/ /pubmed/34290315 http://dx.doi.org/10.1038/s41598-021-94230-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Lin, Chih-Wei Zheng, Tianqing Grande, Geramie Nanna, Alex R. Rader, Christoph Lerner, Richard A. A new immunochemical strategy for triple-negative breast cancer therapy |
title | A new immunochemical strategy for triple-negative breast cancer therapy |
title_full | A new immunochemical strategy for triple-negative breast cancer therapy |
title_fullStr | A new immunochemical strategy for triple-negative breast cancer therapy |
title_full_unstemmed | A new immunochemical strategy for triple-negative breast cancer therapy |
title_short | A new immunochemical strategy for triple-negative breast cancer therapy |
title_sort | new immunochemical strategy for triple-negative breast cancer therapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295383/ https://www.ncbi.nlm.nih.gov/pubmed/34290315 http://dx.doi.org/10.1038/s41598-021-94230-4 |
work_keys_str_mv | AT linchihwei anewimmunochemicalstrategyfortriplenegativebreastcancertherapy AT zhengtianqing anewimmunochemicalstrategyfortriplenegativebreastcancertherapy AT grandegeramie anewimmunochemicalstrategyfortriplenegativebreastcancertherapy AT nannaalexr anewimmunochemicalstrategyfortriplenegativebreastcancertherapy AT raderchristoph anewimmunochemicalstrategyfortriplenegativebreastcancertherapy AT lernerricharda anewimmunochemicalstrategyfortriplenegativebreastcancertherapy AT linchihwei newimmunochemicalstrategyfortriplenegativebreastcancertherapy AT zhengtianqing newimmunochemicalstrategyfortriplenegativebreastcancertherapy AT grandegeramie newimmunochemicalstrategyfortriplenegativebreastcancertherapy AT nannaalexr newimmunochemicalstrategyfortriplenegativebreastcancertherapy AT raderchristoph newimmunochemicalstrategyfortriplenegativebreastcancertherapy AT lernerricharda newimmunochemicalstrategyfortriplenegativebreastcancertherapy |